数値計算 【入門】複雑な定積分①【数値計算】 偶関数、奇関数を駆使する数学パズルを実施。細かいことは置いておいて、雰囲気のみでざっくり解説。奇関数が確定すれば0にできる。偶関数が確定すれば線対称を利用して積分範囲を半分にした上で2倍にすればOK。 2024.08.12 数値計算
数値計算 MATLAB,Python,Scilab,Julia比較 第5章 その14【複雑な定積分④】 複雑な関数も無限次元ベクトルと見なすと力業で解くことが可能。複雑な定積分を無限次元ベクトルとして表現。これをプログラムとして解いていく。 2024.08.11 数値計算
数値計算 MATLAB,Python,Scilab,Julia比較 第5章 その13【複雑な定積分③】 偶関数、奇関数の特性を利用しまくって定積分を最適化しまくる。ほとんどが0に消えて、半円の方程式だけが残る。さらに偶関数の特性を利用して四分円にする。半径2の円を四等分すれば答えが出る。 2024.08.10 数値計算
数値計算 MATLAB,Python,Scilab,Julia比較 第5章 その12【複雑な定積分②】 前回の数学パズルを真面目に解いてみる。まずは平方根の関数の正体を探る。結果としては半円の方程式と言うことになる。これで構成される関数が偶関数か奇関数か特定できたことになる。 2024.08.09 数値計算
数値計算 MATLAB,Python,Scilab,Julia比較 第5章 その11【複雑な定積分①】 偶関数、奇関数を駆使する数学パズルを実施。細かいことは置いておいて、雰囲気のみでざっくり解説。奇関数が確定すれば0にできる。偶関数が確定すれば線対称を利用して積分範囲を半分にした上で2倍にすればOK。 2024.08.08 数値計算
数値計算 【入門】偶関数と奇関数②【数値計算】 奇関数について説明。単純に原点に対して展対称な関数。偶関数と奇関数の積の重要結論としては以下になるだけ。偶関数×偶関数=偶関数奇関数×偶関数=奇関数奇関数×奇関数=偶関数 2024.08.07 数値計算
数値計算 MATLAB,Python,Scilab,Julia比較 第5章 その10【偶関数と奇関数④】 偶関数と奇関数の積の重要な特性について説明。結論としては以下になるだけ。偶関数×偶関数=偶関数。奇関数×偶関数=奇関数。奇関数×奇関数=偶関数。 2024.08.05 数値計算
数値計算 MATLAB,Python,Scilab,Julia比較 第5章 その9【偶関数と奇関数③】 奇関数について説明。単純に原点に対して展対称な関数。この特性から-L~Lの範囲の定積分は、必ず0になる。 2024.08.04 数値計算
数値計算 MATLAB,Python,Scilab,Julia比較 第5章 その8【偶関数と奇関数②】 偶関数について説明。単純にy軸に対して線対称な関数。この特性から-L~Lの範囲の定積分は、0~Lの範囲の定積分の2倍となる。 2024.08.03 数値計算