AI

G検定

【ディープラーニングG検定対策】ディープラーニングの手法

G検定シラバス「ディープラーニングの手法」の範囲の対策。難易度は高。過去問、問題中でだけではフォローしきれない。昨今のDNNを調べておく必要がある。Softmax:出力を正規化して確率として解釈。tanh:双曲線正接関数。ReLU:正規化線形関数、ランプ関数。
G検定

【ディープラーニングG検定対策】ディープラーニングの概要

G検定シラバス「ディープラーニングの概要」の範囲の対策。難易度は中程度、過去問、問題集で十分フォローできる。イテレーション=重み更新回数。エポック=訓練データを使用した回数。各種定理。・バーニーおじさんのルール・ノーフリーランチ定理・みにくいアヒルの子定理・モンベックのパラドックス
G検定

【ディープラーニングG検定対策】機械学習の具体的手法

G検定シラバス「機械学習の具体的手法」の範囲の対策。上記に加え以下も調べておく必要あり。・t-SNE(t-distributed Stochastic Neighbor Embedding :t分布型確率的近傍埋め込み)・・次元削減アルゴリズムの一つ
G検定

【ディープラーニングG検定対策】人工知能分野の問題

G検定シラバス「人工知能分野の問題」の範囲の対策。難易度は中程度。過去問、問題集でフォローできる。強いAI=汎用AI=AGI(Artificial General Intelligence)弱いAI=特化AI。シンギュラリティについての各人の意見。
G検定

【ディープラーニングG検定対策】人工知能をめぐる動向

G検定シラバス「人工知能をめぐる動向」の範囲の対策。 難易度は中程度で、過去問、問題集で凡そフォローできる。 STRIPSは1971年 Richard FikesとNils Nilcsonの自動計画AI SHRDLUはCycプロジェクトから2001年にOpenCycとして公開される。
G検定

【ディープラーニングG検定対策】人工知能(AI)とは

G検定シラバス「人工知能(AI)とは」の範囲の対策。基本的に難易度への影響は少ない部分であり、過去問、問題集だけの対策で十分と言える。アーサー・サミュエルの発言"明示的にプログラムしなくても学習する能力をコンピュータに与える研究分野"各ブームの終焉理由は把握しておいた方が良い。
AI、データサイエンス

ディープラーニング、機械学習の基礎数学

微分係数の定義。導関数の公式。偏微分。ベクトルの和。行列の和。行列の積。統計学。相関。
AI、データサイエンス

ディープラーニングの法律、倫理、現行の議論

AIプロダクト開発の工程を通じて関連する法律、倫理、現行の議論について記載する。プロダクトを考える。データを集める。データの加工、分析、学習。実装、運用、評価。クライシスマネジメント。
AI、データサイエンス

ディープラーニングの産業への応用 その2

産業への応用の応用例を列挙。タクシー需要予測。来店者情報。無人コンビニ。多様な作業。物流。農業。金融。学習。インターネット関連。
AI、データサイエンス

ディープラーニングの産業への応用 その1

G検定対策はこちらはじめに産業への応用の応用例を列挙。ものづくり不良品検出「不良品が発生する頻度が少ない」ことが課題。良品データのみの特徴を抽出し、その差分で不良品を検出。つまり、良品データでなければ不良品という考え方。AutoEncode...