【入門】シグモイドによる決定境界安定化(Julia)【数値計算】

【入門】シグモイドによる決定境界安定化(Julia)【数値計算】 数値計算
【入門】シグモイドによる決定境界安定化(Julia)【数値計算】

MATLAB、Python、Scilab、Julia比較ページはこちら
https://www.simulationroom999.com/blog/comparison-of-matlab-python-scilab/

はじめに

の、

MATLAB,Python,Scilab,Julia比較 第4章 その26【シグモイドによる決定境界安定化⑥】

を書き直したもの。

活性化関数をシグモイド関数にした形式ニューロンをJuliaで実現

【再掲】シグモイド関数

差し替えるシグモイド関数の数式と波形は以下になる。

シグモイド関数

\(
\displaystyle\varsigma=\frac{1}{1+e^{-ax}}=\frac{tanh(ax/2)+1}{2}
\)

これを活性化関数とした形式ニューロンをJuliaで実現する。

Juliaコード

Juliaコードは以下

function sigmoid(x)
    return 1.0 ./ (1.0 + exp.(-x))
end
using PyPlot

function NeuronalBruteForceLearningHeaviside()
	# データセットの入力
	X = [0 0; 0 1; 1 0; 1 1]
	# データセットの出力
	Y = [0; 0; 0; 1]

	# パラメータの初期値
	W = zeros(2, 1) # 重み
	b = 0 # バイアス
	num_epochs = 10000 # 学習のエポック数
	learning_rate = 0.1 # 学習率
	min_loss = Inf
	learning_range = 4
	n = length(Y)

	# 重みの総当たり計算
	best_w1, best_w2, best_b = 0, 0, 0
	for w1 = -learning_range:learning_rate:learning_range
	    for w2 = -learning_range:learning_rate:learning_range
	        for b = -learning_range:learning_rate:learning_range
	            # フォワードプロパゲーション
	            Z = X * [w1; w2] .+ b # 重みとバイアスを使用して予測値を計算
	            A = sigmoid.(Z) # シグモイド活性化関数を適用

	            # 損失の計算
	            loss = 1/n * sum((A - Y).^2) # 平均二乗誤差

	            # 最小損失の更新
	            if loss < min_loss
	                min_loss = loss
	                best_w1 = w1
	                best_w2 = w2
	                best_b = b
	            end
	        end
	    end
	    # ログの表示
	    println("loss: $min_loss")
	    println("weight: w1 = $best_w1, w2 = $best_w2")
	    println("bias: b = $best_b")
	end

	# 最小コストの重みを更新
	W = [best_w1; best_w2]
	b = best_b

	# 学習結果の表示
	println("learning completed")
	println("weight: w1 = $(W[1]), w2 = $(W[2])")
	println("bias: b = $b")

	# 出力結果確認
	println("X=$(X)")
	result = sigmoid.(X * [W[1]; W[2]] .+ b)
	println("hatY=$(result)")
	
	# 決定境界線のプロット
	x1 = range(-0.5, 1.5, length=100) # x1の値の範囲
	x2 = -(W[1] * x1 .+ b) / W[2] # x2の計算

	scatter(X[Y .== 0, 1], X[Y .== 0, 2], color="r", marker="o", label="Class 0")
	scatter(X[Y .== 1, 1], X[Y .== 1, 2], color="b", marker="o", label="Class 1")
	plot(x1, x2, color="k", linewidth=2)
	xlim([-0.5, 1.5])
	ylim([-0.5, 1.5])

	# グラフの装飾
	title("Decision Boundary")
	xlabel("x1")
	ylabel("x2")
	legend(["Class 0", "Class 1", "Decision Boundary"])
	grid(true)
	show()
end


NeuronalBruteForceLearningHeaviside()

処理結果

処理結果は以下

活性化関数をシグモイド関数にした形式ニューロン(Julia)
weight: w1 = 2.6, w2 = 2.7
bias: b = -4.0
X=[0 0; 0 1; 1 0; 1 1]
hatY=[0.01798620996209156, 0.21416501695744142, 0.19781611144141825, 0.7858349830425586]

まとめ

  • 活性化関数をシグモイド関数にした形式ニューロンをJuliaで実現。
  • 結果はカスタムヘヴィサイドの時と一緒。

MATLAB、Python、Scilab、Julia比較ページはこちら

Pythonで動かして学ぶ!あたらしい線形代数の教科書

Amazon.co.jp

ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装

Amazon.co.jp

ゼロからはじめるPID制御

https://amzn.to/3SvzuyR

OpenCVによる画像処理入門

https://amzn.to/498ZUgK

恋する統計学[回帰分析入門(多変量解析1)] 恋する統計学[記述統計入門]

Amazon.co.jp

Pythonによる制御工学入門

Amazon.co.jp

理工系のための数学入門 ―微分方程式・ラプラス変換・フーリエ解析

https://amzn.to/3UAunQK

コメント

タイトルとURLをコピーしました