【入門】連鎖律の前準備①【数値計算】

【入門】連鎖律の前準備①【数値計算】 数値計算
【入門】連鎖律の前準備①【数値計算】

積の微分公式

ここでは積の微分公式の話になる。
これも後ほど出てくる商の微分公式に必要なものになる。

一言でいうと
「関数同士の積の微分がどう変形できるか」
という公式。
先に公式を出しておこう。

\(
\{f(x)g(x)\}\prime=g\prime(x)f(x)+f\prime(x)g(x)
\)

これも意味わからんものが意味わからんものに変形されてるだけに見えるかもしれないが、
これもあとで使うものだからとりあえず覚えておいて。
くらいしか言えない。

積の微分公式の導出

これの導出方法はシンプルではあるが、少しトリッキーなことをする。
以下が導出過程になる。

\(
\displaystyle\{f(x)g(x)\}\prime=\lim_{h\to0}\frac{f(x+h)g(x+h)-f(x)g(x)}{h}
\)

ここで、\(f(x+h)g(x+h)-f(x)g(x)\)を変形する。

\(
\begin{eqnarray}
&&f(x+h)g(x+h)-f(x)g(x)\\
&=&f(x+h)g(x+h){\color{red}-f(x+h)g(x)+f(x+h)g(x)}-f(x)g(x)
\end{eqnarray}
\)

赤文字のところを追加したのだけど、この部分は同じものを引いてから足してるので0。
つまり、式の解としては変化しないはずのものになる。
この部分が先ほど言ったトリッキーな部分となる。

そして、これを整理する。

\(
\begin{eqnarray}
\displaystyle\{f(x)g(x)\}^\prime&=&\lim_{h\to0}\frac{g(x+h)-g(x)}{h}\cdot f(x+h)+\frac{f(x+h)-f(x)}{h}\cdot g(x)\\
&=&g\prime(x)f(x)+f\prime(x)g(x)
\end{eqnarray}
\)

と言う感じで積の微分公式が求まる。

まとめ

  • 最適化アルゴリズムを使用するには連鎖律が必要。
  • 連鎖律を把握するための知識を列挙。
  • まずは逆数の微分公式。
  • 積の微分公式を導出。

MATLAB、Python、Scilab、Julia比較ページはこちら

Pythonで動かして学ぶ!あたらしい線形代数の教科書

Amazon.co.jp: Pythonで動かして学ぶ!あたらしい線形代数の教科書 eBook : かくあき: Kindleストア
Amazon.co.jp: Pythonで動かして学ぶ!あたらしい線形代数の教科書 eBook : かくあき: Kindleストア

ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装

ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装 | 斎藤 康毅 |本 | 通販 | Amazon
Amazonで斎藤 康毅のゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装。アマゾンならポイント還元本が多数。斎藤 康毅作品ほか、お急ぎ便対象商品は当日お届けも可能。またゼロから作るDeep Lea...

ゼロからはじめるPID制御

ゼロからはじめるPID制御 | 熊谷 英樹 |本 | 通販 | Amazon
Amazonで熊谷 英樹のゼロからはじめるPID制御。アマゾンならポイント還元本が多数。熊谷 英樹作品ほか、お急ぎ便対象商品は当日お届けも可能。またゼロからはじめるPID制御もアマゾン配送商品なら通常配送無料。

OpenCVによる画像処理入門

OpenCVによる画像処理入門 改訂第3版 (KS情報科学専門書) | 小枝 正直, 上田 悦子, 中村 恭之 |本 | 通販 | Amazon
Amazonで小枝 正直, 上田 悦子, 中村 恭之のOpenCVによる画像処理入門 改訂第3版 (KS情報科学専門書)。アマゾンならポイント還元本が多数。小枝 正直, 上田 悦子, 中村 恭之作品ほか、お急ぎ便対象商品は当日お届けも可能。...

恋する統計学[回帰分析入門(多変量解析1)] 恋する統計学[記述統計入門]

恋する統計学[回帰分析入門(多変量解析1)] 恋する統計学[記述統計入門] | 金城俊哉 | 数学 | Kindleストア | Amazon
Amazonで金城俊哉の恋する統計学 恋する統計学。アマゾンならポイント還元本が多数。一度購入いただいた電子書籍は、KindleおよびFire端末、スマートフォンやタブレットなど、様々な端末でもお楽しみいただけます。

Pythonによる制御工学入門

Amazon.co.jp

理工系のための数学入門 ―微分方程式・ラプラス変換・フーリエ解析

Amazon.co.jp

コメント

タイトルとURLをコピーしました