数値計算

MATLAB,Python,Scilab,Julia比較 第3章 その44【非極大値抑制⑨】

Juliaで非極大値抑制を実施。MATLABと同様の結果が得られた。ピクセルの正規化の話と、"."によるブロードキャストは毎度な話。
数値計算

MATLAB,Python,Scilab,Julia比較 第3章 その43【非極大値抑制⑧】

Scilabで非極大値抑制を実施。MATLABと同様の結果が得られた。コードもほぼ一緒。Scilabも線形&論理インデックスサーチが存在する。
数値計算

MATLAB,Python,Scilab,Julia比較 第3章 その42【非極大値抑制⑦】

Python(NumPy)で非極大値抑制を実施。MATLABと同一の結果が得られた。MATLABでは論理インデックスサーチを使用したが、ここではあえて線形インデックスサーチを使用。
数値計算

MATLAB,Python,Scilab,Julia比較 第3章 その41【非極大値抑制⑥】

MATLABで非極大値抑制を実施。想定通りの結果が得られた。論理インデックスサーチを利用している個所がある。インデックスサーチについては別途説明。
数値計算

【入門】非極大値抑制【数値計算】

非極大値抑制(Non-maximum suppression)について説明。概念としてはシンプルだが、2次元平面で考える場合、どの方向から極大値を評価するが重要。x方向、y方向の輝度勾配が分かっているので、勾配の方向はarctanで特定可能。
数値計算

MATLAB,Python,Scilab,Julia比較 第3章 その40【非極大値抑制⑤】

非極大値抑制をプログラムで実現する手順を確認。一個一個はそれほど複雑ではない。(はず)勾配方向角度については、度数法で扱う。プログラム的には弧度法の方が扱いやすいが、人間から見た分かり易さを重視。
数値計算

MATLAB,Python,Scilab,Julia比較 第3章 その39【非極大値抑制④】

非極大値抑制を実現するための斜面の方向パターンについて説明。arctan関数で細かい方向は特定できるが、基本は4パターンに丸められる。判定ピクセルマスを5×5、7×7などにしてもっと細かくするパターンもある。
数値計算

MATLAB,Python,Scilab,Julia比較 第3章 その38【非極大値抑制③】

非極大値抑制の「勾配の特定方法」について解説。2次元平面で考えるためには勾配の方向が重要。勾配の方向は、横、縦それぞ実際にはarctan関数を使用する。arctan関数はtan関数の逆関数。
数値計算

MATLAB,Python,Scilab,Julia比較 第3章 その37【非極大値抑制②】

非極大値抑制の大雑把な雰囲気を確認。図で確認。2次元平面に実施すこれも図で確認。様々な方向から見た極大値を意識する必要がある。
数値計算

MATLAB,Python,Scilab,Julia比較 第3章 その36【非極大値抑制①】

エッジ検出もっとシビアに行いたい。非極大値抑制を使うといい感じになる。同様の用語が物体検出器でも出てくるが別物。具体的な話は順を追って説明する。