【入門】三角関数の直交性(Scilab)【数値計算】

【入門】三角関数の直交性(Scilab)【数値計算】 数値計算
【入門】三角関数の直交性(Scilab)【数値計算】

MATLAB、Python、Scilab、Julia比較ページはこちら
https://www.simulationroom999.com/blog/comparison-of-matlab-python-scilab/

はじめに

の、

MATLAB,Python,Scilab,Julia比較 第5章 その35【三角関数の直交性⑩】

を書き直したもの。

フーリエ係数に至る道。
今回は三角関数の直交性をScilabで確認してみる。

【再掲】フーリエ係数に至る道

まずは、フーリエ係数に至る道を再掲。

  • 偶関数
  • 奇関数
  • 関数の内積
  • 三角関数の加法定理
  • 三角関数の積和公式
  • 重要な極限値
  • 三角関数の直交性
  • フーリエ係数

今回は三角関数の直交性をScilabで確認してみる。

【再掲】プログラムで確認する内容

以下をプログラムで確認。

  • \(\sin(x)\cdot\cos(x)=0\)
  • \(\sin(x)\cdot\cos(2x)=0\)
  • \(\sin(x)\cdot\sin(x)=\pi\)
  • \(\cos(2x)\cdot\cos(2x)=\pi\)
  • \(\cos(x)\cdot\sin(2x)=0\)
  • \(\sin(x)\cdot\cos(2x)=0\)

畳み込みを意識してみると良いだろう。

Scilabコード

Scilabコードは以下となる。

N = 1000000;			// 要素数
L = %pi;				// 0を中心とした±幅
x = linspace(-L,L,N);	// x軸
dx = 2*L/N;				// Δx

y=sin(x)*cos(x)'*dx;
printf('sin(x)・cos(x)=%.5f\n', y)

y=sin(x)*cos(2*x)'*dx;
printf('sin(x)・cos(2x)=%.5f\n', y)

y=sin(x)*sin(x)'*dx;
printf('sin(x)・sin(x)=%.5f\n', y)

y=cos(2*x)*cos(2*x)'*dx;
printf('cos(2x)・cos(2x)=%.5f\n', y)

y=cos(x)*sin(2*x)'*dx;
printf('cos(x)・sin(2x)=%.5f\n', y)

y=sin(x)*cos(2*x)'*dx;
printf('sin(x)・cos(2x)=%.5f\n', y)

処理結果

処理結果は以下。

sin(x)・cos(x)=0.00000
sin(x)・cos(2x)=0.00000
sin(x)・sin(x)=3.14159
cos(2x)・cos(2x)=3.14160
cos(x)・sin(2x)=-0.00000
sin(x)・cos(2x)=0.00000

考察

これもOK。

コード自体もMATLABとほぼ一緒。
円周率が「pi」ではなく「%pi」になっている点に注意。

まとめ

  • 三角関数の直交性をScilabで確認してみた。
  • 同一の関数及び角周波数の場合はπになり、それ以外は0になる。

MATLAB、Python、Scilab、Julia比較ページはこちら

マンガでわかるフーリエ解析

Amazon.co.jp

手を動かしてまなぶ フーリエ解析・ラプラス変換

Amazon.co.jp

物理数学 量子力学のためのフーリエ解析・特殊関数

物理数学 量子力学のためのフーリエ解析・特殊関数 | 柴田 尚和, 是常 隆 | 数学 | Kindleストア | Amazon
Amazonで柴田 尚和, 是常 隆の物理数学 量子力学のためのフーリエ解析・特殊関数。アマゾンならポイント還元本が多数。一度購入いただいた電子書籍は、KindleおよびFire端末、スマートフォンやタブレットなど、様々な端末でもお楽しみい...

単位が取れるフーリエ解析ノート

https://amzn.to/3V83fIl

今日から使えるフーリエ変換 普及版 式の意味を理解し、使いこなす

https://amzn.to/3ysbfvf

コメント

タイトルとURLをコピーしました