【入門】非極大値抑制【数値計算】

【入門】非極大値抑制【数値計算】 数値計算
【入門】非極大値抑制【数値計算】

斜面の方向パターン

とりあえず、x方向とy方向のエッジから勾配の方向は特定できそうってところまでやった。
これで、360°どの方向の輝度勾配か特定可能になったと言える。

が、
画像データはピクセルの塊である。
実際、360°で評価することはできるのだろうか?

少なくとも縦と横は判定できそう。
加えて斜めもなんとか可能な感じはする。

斜面の方向パターンを図解

結論を言うと、
評価する勾配方向は
垂直(UD)、水平(LR)、斜め右上から右下(RULD)、斜め左上から右下(LURD)
の4パターンとなる。
勾配方向の角度をこの4パターンに丸める。
67.5[deg]~ 112.5[deg] or -112.5[deg]~ -67.5[deg]だったら垂直。
みたいな感じ。

とりあえず図解しておこう。

非極大値抑制 斜面の方向、-22.5° ~ 22.5° LR、22.5° ~ 67.5° RULD、67.5° ~ 112.5° UD、112.5° ~ 157.5° LURD、157.5° ~ 180.0° LR、-180.0° ~ -157.5° LR、-157.5° ~ -112.5° RULD、-112.5° ~ -67.5° UD、-67.5° ~ -22.5° LURD

ぱっと見、8方向ではあるのだが、
極大値を判定する際は、逆から見ても評価の線としては一緒なので、
その部分をまとめると4方向になる。
LR:水平
RULD:右上から左下
UD:垂直
LURD:左上から左下
角度を元にした変換表を書くとこんな感じになる。

角度[°]パターン
-22.5 ~ 22.5LR ─
22.5 ~ 67.5RULD /
67.5 ~ 112.5UD │
112.5 ~ 157.5LURD \
157.5 ~ 180.0LR ─
-180.0 ~ -157.5LR ─
-157.5 ~ -112.5RULD /
-112.5 ~ -67.5UD │
-67.5 ~ -22.5LURD \

つまり、中途半端な角度が出ても、この4にパターンに丸めるってことになる。

これは判定するピクセルを3×3マスをベースに考えた場合で、
5×5マス、7×7マスで見て、もっと細かいパターンを出すこともあるらしい
ここでは3×3マスをベースとした方向の丸めを採用する。

今後の予定

非極大値抑制の理屈的な話は以上になる。

となると、あとは実際にどう試すか。
というところになる。

動作確認用の処理は以下の流れを想定している。

  • Sobelフィルタ等の微分フィルタで以下を推定
    • x軸、y軸の濃淡変化量
    • 変化強度(ノルム)
  • 「x軸、y軸の濃淡変化量」から勾配方向角を推定
    • arntan関数を利用
  • 勾配方向を垂直(UD)、水平(LR)、斜め右上から右下(RULD)、斜め左上から右下の4パターンに丸め。
  • 勾配方向角に応じて極大値評価をして非極大値だったら「変化強度(ノルム)」 を0値埋め
  • 画像出力

一個一個はこれまでに説明した通りでそれほど複雑ではない。

勾配方向角度について

あと、勾配方向の角度についてだが、一般的には弧度法を使用する。
しかし、今回はイメージのしやすさ重視で度数法を使用する。

弧度法についてはここ参照。

2πが360°、πで180°、1/2πで90°という関係性のもの。
度数法の方がきっと直感的。

というわけで次回から実際にプログラムを組んでいく。

まとめ

  • 非極大値抑制(Non-maximum suppression)について説明。
  • 概念としてはシンプルだが、2次元平面で考える場合、どの方向から極大値を評価するが重要。
    • x方向、y方向の輝度勾配が分かっているので、勾配の方向はarctanで特定可能。

MATLAB、Python、Scilab、Julia比較ページはこちら

社会のなかの数理 [新装版]──行列とベクトル入門──

社会のなかの数理 [新装版]──行列とベクトル入門── | イアン・ブラッドリー, ロナルド・L・ミーク, 小林 淳一, 三隅 一人 |本 | 通販 | Amazon
Amazonでイアン・ブラッドリー, ロナルド・L・ミーク, 小林 淳一, 三隅 一人の社会のなかの数理 ──行列とベクトル入門──。アマゾンならポイント還元本が多数。イアン・ブラッドリー, ロナルド・L・ミーク, 小林 淳一, 三隅 一人...

なっとくする演習 行列・ベクトル なっとくする演習・行列 ベクトル (なっとくシリーズ)

Amazon.co.jp: なっとくする演習 行列・ベクトル なっとくする演習・行列 ベクトル (なっとくシリーズ) eBook : 牛瀧文宏: Kindleストア
Amazon.co.jp: なっとくする演習 行列・ベクトル なっとくする演習・行列 ベクトル (なっとくシリーズ) eBook : 牛瀧文宏: Kindleストア

ゼロからはじめるPID制御

ゼロからはじめるPID制御 | 熊谷 英樹 |本 | 通販 | Amazon
Amazonで熊谷 英樹のゼロからはじめるPID制御。アマゾンならポイント還元本が多数。熊谷 英樹作品ほか、お急ぎ便対象商品は当日お届けも可能。またゼロからはじめるPID制御もアマゾン配送商品なら通常配送無料。

基礎からわかる時系列分析―Rで実践するカルマンフィルタ・MCMC・粒子フィルタ― Data Science Library

基礎からわかる時系列分析―Rで実践するカルマンフィルタ・MCMC・粒子フィルタ― Data Science Library | 萩原 淳一郎, 瓜生 真也, 牧山 幸史, 石田 基広 | 数学 | Kindleストア | Amazon
Amazonで萩原 淳一郎, 瓜生 真也, 牧山 幸史, 石田 基広の基礎からわかる時系列分析―Rで実践するカルマンフィルタ・MCMC・粒子フィルタ― Data Science Library。アマゾンならポイント還元本が多数。一度購入いた...

観測と最小二乗法―測量・G空間データの解析

観測と最小二乗法―測量・G空間データの解析 | 西 修二郎 |本 | 通販 | Amazon
Amazonで西 修二郎の観測と最小二乗法―測量・G空間データの解析。アマゾンならポイント還元本が多数。西 修二郎作品ほか、お急ぎ便対象商品は当日お届けも可能。また観測と最小二乗法―測量・G空間データの解析もアマゾン配送商品なら通常配送無料...

ディジタル画像処理[改訂第二版]

Amazon.co.jp: ディジタル画像処理 [改訂第二版] eBook : ディジタル画像処理編集委員会: 本
Amazon.co.jp: ディジタル画像処理 eBook : ディジタル画像処理編集委員会: 本

高校数学でわかるフーリエ変換―フーリエ級数からラプラス変換まで (ブルーバックス)

Amazon.co.jp: 高校数学でわかるフーリエ変換 : フーリエ級数からラプラス変換まで (ブルーバックス) eBook : 竹内淳: 本
Amazon.co.jp: 高校数学でわかるフーリエ変換 : フーリエ級数からラプラス変換まで (ブルーバックス) eBook : 竹内淳: 本

マンガでわかるフーリエ解析

マンガでわかるフーリエ解析 | 渋谷道雄, 晴瀬ひろき, 晴瀬 ひろき, トレンド・プロ, トレンドプロ | 数学 | Kindleストア | Amazon
Amazonで渋谷道雄, 晴瀬ひろき, 晴瀬 ひろき, トレンド・プロ, トレンドプロのマンガでわかるフーリエ解析。アマゾンならポイント還元本が多数。一度購入いただいた電子書籍は、KindleおよびFire端末、スマートフォンやタブレットな...

入門信号処理のための数学―離散フーリエ変換・離散コサイン変換

入門信号処理のための数学―離散フーリエ変換・離散コサイン変換 | 高橋 信 |本 | 通販 | Amazon
Amazonで高橋 信の入門信号処理のための数学―離散フーリエ変換・離散コサイン変換。アマゾンならポイント還元本が多数。高橋 信作品ほか、お急ぎ便対象商品は当日お届けも可能。また入門信号処理のための数学―離散フーリエ変換・離散コサイン変換も...

はじめて学ぶディジタル・フィルタと高速フ-リエ変換: 基礎・原理からよく理解するための (ディジタル信号処理シリーズ)

はじめて学ぶディジタル・フィルタと高速フ-リエ変換: 基礎・原理からよく理解するための (ディジタル信号処理シリーズ) | 三上 直樹 |本 | 通販 | Amazon
Amazonで三上 直樹のはじめて学ぶディジタル・フィルタと高速フ-リエ変換: 基礎・原理からよく理解するための (ディジタル信号処理シリーズ)。アマゾンならポイント還元本が多数。三上 直樹作品ほか、お急ぎ便対象商品は当日お届けも可能。また...

コメント

タイトルとURLをコピーしました