【入門】多変量多項式回帰分析(関数項)(MATLAB)【数値計算】

【入門】多変量多項式回帰分析(関数項)(MATLAB)【数値計算】 数値計算
【入門】多変量多項式回帰分析(関数項)(MATLAB)【数値計算】

MATLAB、Python、Scilab、Julia比較ページはこちら
https://www.simulationroom999.com/blog/comparison-of-matlab-python-scilab/

はじめに

の、
MATLAB,Python,Scilab,Julia比較 第2章 その73【多変量多項式回帰分析(関数項)②】

を書き直したもの。

正規方程式を用いた、多変量多項式回帰分析(関数項あり)について。
今回は、MATLABで演算してみる。

正規方程式、各パラメータ、推定対象の多項式再掲

多変量多項式回帰分析(関数項あり)をMATLABで実現する。
まずは恒例の正規方程式、多変量多項式回帰分析(関数項あり)で想定するパラメータの再掲。

正規方程式

x=(ATA)1ATb

多変量多項式回帰分析(関数項あり)に於ける各パラメータ

A=[x12cos(6x1)y12exp(2y1)1x22cos(6x2)y22exp(2y2)1xn2cos(6xn)yn2exp(2yn)1],x=[αβγδϵ],b=[z1z2zn]

推定対象の多項式

z=4x25cos(6x)+3y2+exp(2y)+2

MATLABコード

MATLABコードは以下になる。

n = 100;

x = rand(n, 1);
y = rand(n, 1);
z = 4*x.^2 - 5*cos(6*x) + 3*y.^2 + exp(2*y) + 2 + rand(n, 1)-0.5;

A=[x.^2  cos(6*x)  y.^2  exp(2*y)  ones(length(x),1)];
b=z;
X=(A'*A)^-1 *A'*b;
disp(X);

scatter3(x, y ,z);
hold on
xp=linspace(0, 1, 10);
yp=linspace(0, 1, 10);

[xpm,ypm]=meshgrid(xp,yp);
mesh( xp, yp, X(1)*xpm.^2 + X(2)*cos(6*xpm) + X(3)*ypm.^2 + X(4)*exp(2*ypm)+X(5));
hold off

処理結果

処理結果は以下。

正規方程式で多変量多項式回帰分析(関数項あり)(MATLAB)、Figure 1
    3.9746
   -5.0631
    3.8740
    0.8655
    2.2085

考察

狙い通り動いてるけど、少し誤差が出てる。
サンプル点数を増やすと、当然ながら元の式と同じ係数に近付いていく。
ちなみに10000点だと以下の結果になる。

    3.9843
   -4.9941
    2.7048
    1.0476
    1.9484

これだと結構理想値に近い結果になっている。
コードも方もベクトル、行列の定義が変わっただけで処理手順は変化ない。

まとめ

  • 正規方程式による多変量多項式回帰分析(関数項あり)をMATLABで実施。
  • 誤差はあるものの目的の係数の算出はできている。
    • サンプル点数を増やせば、理想値に近付く。

MATLAB、Python、Scilab、Julia比較ページはこちら

コメント

タイトルとURLをコピーしました