【入門】フーリエ級数(周期2L)①【数値計算】

【入門】フーリエ級数(周期2L)①【数値計算】 数値計算
【入門】フーリエ級数(周期2L)①【数値計算】

周期を2πを2Lに変えるには。

結局、周期を伸縮するにはどうしたら良いのだろう?

考え方はシンプル。
フーリエ級数は、
\(\cos(x)+\cos(2x)+\cos(3x)+\dots\)
と角周波数を増やしていったものを加算している。

角周波数ってのは、\(\cos\)とか\(\sin\)とかの中に入ってる\(nx\)の\(n\)のこと。

ここで、\(x\)に任意の周期である\(L\)が入った際に、
\(\pi\)と認識させるにはどうしたら良いかと言う考え方になる。

フクさん:
\(f(t)\)の周期を\(2L\)と置いた場合、
時間\(t\)と\(2L\)と\(x\)の関係は以下になる。

\(
\begin{eqnarray}
\displaystyle x&=&\frac{2L}{2\pi}t=\frac{L}{\pi}t\\
\displaystyle \therefore t&=&\frac{\pi}{L}x
\end{eqnarray}
\)

\(L\)を\(\pi\)に変えるって式になっていることがわかるだろう。
よって、任意周期を\(2L\)に解釈し直したフーリエ級数は以下となる。

\(
\displaystyle f(x)=\frac{a_0}{2}+\sum_{n=1}^{\infty}a_n\cos(\frac{n\pi x}{L})+b_n\sin(\frac{n\pi x}{L})
\)

周期を変えたいだけなので、\(x\)に周期に沿った係数を掛けてあげればOKって話になる。

フーリエ係数の方は?

フーリエ級数の任意周期化はわかったが、
フーリエ係数はどうなるのだろうか?

フーリエ係数も一緒。
むしろフーリエ係数のために辻褄を合わせてると言っても良い。
\(x\)が\(L\)を\(\pi\)と認識させればOK。
さらに\(\pi\)を\(L\)変わっていれば、全体として辻褄が合う。
以下の式になる。

\(
\begin{eqnarray}
\displaystyle a_n&=&\frac{1}{L}\int_{-L}^{L}f(x)\cos(\frac{n\pi x}{L})dx\\
\displaystyle b_n&=&\frac{1}{L}\int_{-L}^{L}f(x)\sin(\frac{n\pi x}{L})dx\\
\displaystyle a_0&=&\frac{1}{L}\int_{-L}^{L}f(x)dx\
\end{eqnarray}
\)

\(\pi\)を\(L\)に差し替えるという意味ではフーリエ級数の時と同じ考え方になる。

原点を中心に据えるという部分は変わらないが、
これは信号の横軸方向の調整でなんとかなるから、
特に問題にならないだろう。

まとめ

  • 前回までのフーリエ級数、フーリエ係数には周期2πという制約がある。
    • 三角関数の直交性を得るための制約。
  • フーリエ級数を伸縮するための検討。
    • xがπと認識するように係数を掛けてあげればOK。
  • フーリエ係数も、πがLになるように式を変更すればOK。

MATLAB、Python、Scilab、Julia比較ページはこちら

マンガでわかるフーリエ解析

Amazon.co.jp

手を動かしてまなぶ フーリエ解析・ラプラス変換

Amazon.co.jp

物理数学 量子力学のためのフーリエ解析・特殊関数

物理数学 量子力学のためのフーリエ解析・特殊関数 | 柴田 尚和, 是常 隆 | 数学 | Kindleストア | Amazon
Amazonで柴田 尚和, 是常 隆の物理数学 量子力学のためのフーリエ解析・特殊関数。アマゾンならポイント還元本が多数。一度購入いただいた電子書籍は、KindleおよびFire端末、スマートフォンやタブレットなど、様々な端末でもお楽しみい...

単位が取れるフーリエ解析ノート

https://amzn.to/3V83fIl

今日から使えるフーリエ変換 普及版 式の意味を理解し、使いこなす

https://amzn.to/3ysbfvf

コメント

タイトルとURLをコピーしました