【入門】フーリエ係数(Python)【数値計算】

【入門】フーリエ係数(Python)【数値計算】 数値計算
【入門】フーリエ係数(Python)【数値計算】

MATLAB、Python、Scilab、Julia比較ページはこちら
https://www.simulationroom999.com/blog/comparison-of-matlab-python-scilab/

はじめに

の、

MATLAB,Python,Scilab,Julia比較 第5章 その45【フーリエ係数⑨】

を書き直したもの。

フーリエ係数に至る道。
今回はフーリエ係数を求めるプログラムをPythonで実現。

【再掲】フーリエ係数を求めるプログラムフロー

まずは、プログラムフローを再掲。

  • csvファイル読み込み
  • 各種変数初期化
  • フーリエ係数算出
  • n=10,50,200のパターンでフーリエ級数で波形を合成
  • グラフにプロット

今回はフーリエ係数を求めるプログラムをPythonで実現。

Pythonコード

まず、使用する波形を取り込んだcsvファイル

Pythonコードは以下になる。

import numpy as np
import matplotlib.pyplot as plt

N=1000  # 係数算出項数(同定元波形のplotよりも少なく)
wave=np.loadtxt('wave.csv',delimiter=',') # 同定波形読み込み

points=len(wave) # 波形のplot数取得
fx=np.array(wave) # 波形を行ベクトルへ
dx=2*np.pi/points # 1plotあたりのx軸幅
x=np.linspace(-np.pi,np.pi,points); # -π~+πの範囲で波形plot数分の等差数列

a = np.zeros(N) # a係数群格納用
b = np.zeros(N) # b係数群格納用

for n in range(1,N+1):
    # 係数a_n算出
    # a_n = (1/π)∫f(fx)cos(nx)dx
    a[n-1] = fx@np.cos(n*x).T*dx/np.pi;
    
    # 係数b_n算出
    # a_n = (1/π)∫f(fx)cos(nx)dx
    b[n-1] = fx@np.sin(n*x).T*dx/np.pi;

# 係数a_0算出
a0=np.sum(fx)*dx/np.pi

Ns = [10,50,200]
fig = plt.figure()

for i in range(0,len(Ns)):
    NN = Ns[i]; # 今回のa_n,b_n項数

    # f(x)=a_0+Σ(a_n cos(nx)+ b_n sin(nx))
    Fourier_series=np.ones(points)*a0/2
    for n in range(1,NN+1):
        Fourier_series = Fourier_series+(a[n-1]*np.cos(n*x)+b[n-1]*np.sin(n*x))
    
    ax = fig.add_subplot(len(Ns), 1, i+1)
    
    # 元波形とフーリエ級数波形の表示
    ax.plot(x, fx,'-b',lw=3)
    ax.plot(x, Fourier_series,'-r',lw=2)
    ax.set_title('n={:d}'.format(NN))
    ax.set_ylim(-0.1,1.1)
    ax.set_xlim(-np.pi,np.pi)
    ax.grid(linestyle='dotted')

plt.show()

処理結果

処理結果は以下。

フーリエ係数算出(Python)

考察

結果としてはMATLABと一緒。
不連続点で振動するのも一緒。
同じ数式を元にしているため当たり前ではある。

Pythonは、MATLABと異なり1オリジンではなく0オリジンなため、
その部分に注意が必要。

まとめ

  • フーリエ係数を求めるプログラムをPythonで実現。
  • おおよそ元の波形を再現できる係数が算出できている。
  • 不連続点では流石に振動している。

MATLAB、Python、Scilab、Julia比較ページはこちら

マンガでわかるフーリエ解析

Amazon.co.jp

手を動かしてまなぶ フーリエ解析・ラプラス変換

Amazon.co.jp

物理数学 量子力学のためのフーリエ解析・特殊関数

物理数学 量子力学のためのフーリエ解析・特殊関数 | 柴田 尚和, 是常 隆 | 数学 | Kindleストア | Amazon
Amazonで柴田 尚和, 是常 隆の物理数学 量子力学のためのフーリエ解析・特殊関数。アマゾンならポイント還元本が多数。一度購入いただいた電子書籍は、KindleおよびFire端末、スマートフォンやタブレットなど、様々な端末でもお楽しみい...

単位が取れるフーリエ解析ノート

https://amzn.to/3V83fIl

今日から使えるフーリエ変換 普及版 式の意味を理解し、使いこなす

https://amzn.to/3ysbfvf

コメント

タイトルとURLをコピーしました