【入門】シグモイド関数の導関数(Julia)【数値計算】

【入門】シグモイド関数の導関数(Julia)【数値計算】 数値計算
【入門】シグモイド関数の導関数(Julia)【数値計算】

MATLAB、Python、Scilab、Julia比較ページはこちら
https://www.simulationroom999.com/blog/comparison-of-matlab-python-scilab/

はじめに

の、

MATLAB,Python,Scilab,Julia比較 第4章 その36【連鎖律の前準備⑩】

を書き直したもの。

シグモイド関数の導関数とオイラー法で求めた微分を比較するプログラムを作成する。
今回はJulia。

【再掲】シグモイド関数、シグモイド関数の導関数、シグモイド関数のオイラー法での微分の式

まずは、シグモイド関数、シグモイド関数の導関数、シグモイド関数のオイラー法での微分の式を再掲。

シグモイド関数

\(
\displaystyle\sigma(x)=\frac{1}{1+e^{-x}}
\)

シグモイド関数の導関数

\(
\sigma\prime(x)=\sigma(x)\{1-\sigma(x)\}
\)

シグモイド関数のオイラー法による微分

\(
\displaystyle\sigma\prime_{euler}(x)=\frac{\sigma(x+h)-\sigma(x)}{h}\dots h=0.01
\)

これをJuliaでplotして比較してみる。
導関数とオイラー法を比較して同一ならOK。

Juliaコード

Juliaコードは以下。

using PyPlot

# シグモイド関数の定義
function sigmoid(x)
    return 1.0 ./ (1.0 .+ exp.(-x))
end

# シグモイド関数の導関数の定義
function sigmoid_derivative(x)
    return sigmoid(x) .* (1.0 .- sigmoid(x))
end

# オイラー法で微分する関数の定義
function euler_derivative(x, h)
    return (sigmoid(x .+ h) .- sigmoid(x)) ./ h
end

# x軸の値の範囲と間隔の設定
x = -10:0.1:10

# シグモイド関数の計算
y_sigmoid = sigmoid.(x)
y_derivative = sigmoid_derivative.(x)

# オイラー法で微分した結果の計算
h = 0.01  # ステップサイズ
y_euler_derivative = euler_derivative.(x, h)

# グラフを上下に並べて表示
figure()

subplot(3, 1, 1)
plot(x, y_sigmoid)
title("Sigmoid Function")
xlabel("x")
ylabel("sigmoid(x)")
grid(true)

subplot(3, 1, 2)
plot(x, y_derivative)
title("Derivative of Sigmoid Function")
xlabel("x")
ylabel("sigmoid'(x)")
grid(true)

subplot(3, 1, 3)
plot(x, y_euler_derivative)
title("Derivative of Sigmoid Function using Euler Method")
xlabel("x")
ylabel("sigmoid'(x)")
grid(true)

tight_layout()  # グラフ間のスペースを調整
show()

処理結果

処理結果は以下。

シグモイド関数、シグモイド関数の導関数、シグモイド関数のオイラー法での微分(Julia)

よって、
導出した導関数は正しいと言える。

まとめ

  • シグモイド関数、シグモイド関数の導関数、シグモイド関数のオイラー法での微分をJuliaで算出。
  • グラフで比較し、導出した導関数は正しいと言える結果となった。

MATLAB、Python、Scilab、Julia比較ページはこちら

Pythonで動かして学ぶ!あたらしい線形代数の教科書

Amazon.co.jp: Pythonで動かして学ぶ!あたらしい線形代数の教科書 eBook : かくあき: Kindleストア
Amazon.co.jp: Pythonで動かして学ぶ!あたらしい線形代数の教科書 eBook : かくあき: Kindleストア

ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装

ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装 | 斎藤 康毅 |本 | 通販 | Amazon
Amazonで斎藤 康毅のゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装。アマゾンならポイント還元本が多数。斎藤 康毅作品ほか、お急ぎ便対象商品は当日お届けも可能。またゼロから作るDeep Lea...

ゼロからはじめるPID制御

ゼロからはじめるPID制御 | 熊谷 英樹 |本 | 通販 | Amazon
Amazonで熊谷 英樹のゼロからはじめるPID制御。アマゾンならポイント還元本が多数。熊谷 英樹作品ほか、お急ぎ便対象商品は当日お届けも可能。またゼロからはじめるPID制御もアマゾン配送商品なら通常配送無料。

OpenCVによる画像処理入門

OpenCVによる画像処理入門 改訂第3版 (KS情報科学専門書) | 小枝 正直, 上田 悦子, 中村 恭之 |本 | 通販 | Amazon
Amazonで小枝 正直, 上田 悦子, 中村 恭之のOpenCVによる画像処理入門 改訂第3版 (KS情報科学専門書)。アマゾンならポイント還元本が多数。小枝 正直, 上田 悦子, 中村 恭之作品ほか、お急ぎ便対象商品は当日お届けも可能。...

恋する統計学[回帰分析入門(多変量解析1)] 恋する統計学[記述統計入門]

恋する統計学[回帰分析入門(多変量解析1)] 恋する統計学[記述統計入門] | 金城俊哉 | 数学 | Kindleストア | Amazon
Amazonで金城俊哉の恋する統計学 恋する統計学。アマゾンならポイント還元本が多数。一度購入いただいた電子書籍は、KindleおよびFire端末、スマートフォンやタブレットなど、様々な端末でもお楽しみいただけます。

Pythonによる制御工学入門

Amazon.co.jp

理工系のための数学入門 ―微分方程式・ラプラス変換・フーリエ解析

Amazon.co.jp

コメント

タイトルとURLをコピーしました