MATLAB、Python、Scilab、Julia比較ページはこちら
https://www.simulationroom999.com/blog/comparison-of-matlab-python-scilab/
はじめに
の、
MATLAB,Python,Scilab,Julia比較 第5章 その16【複雑な定積分⑥】
を書き直したもの。
フーリエ係数に至る道。
今回は偶関数と奇関数を利用した数学パズルを力業で解く方法をPythonで実現する。
【再掲】フーリエ係数に至る道
まずは、フーリエ係数に至る道を再掲。
- 偶関数
- 奇関数
- 関数の内積
- 三角関数の加法定理
- 三角関数の積和公式
- 重要な極限値
- 三角関数の直交性
- フーリエ係数
今回は偶関数と奇関数を利用した数学パズルを力業で解く方法をPythonで実現する。
【再掲】力業で解きたい数式
力業で解きたい数式は以下。
\(
\begin{eqnarray}
&&\displaystyle\int_{-2}^2\Big(x^3\cos(2x)+\frac{1}{2}\Big)\sqrt{4-x^2}dx\\
&=&\displaystyle\int_{-2}^2\Big(x^3\cos(2x)\sqrt{4-x^2}+\frac{1}{2}\sqrt{4-x^2}\Big)dx
\end{eqnarray}
\)
無限次元ベクトルであることを前提として、
今回の定積分を表現すると以下になる。
\(
\begin{eqnarray}
\Bigg(
\begin{bmatrix}
-2^3&\dots&2^3
\end{bmatrix}\odot
\begin{bmatrix}
\cos(2(-2))&\dots&\cos(2(2))
\end{bmatrix}
\begin{bmatrix}
\sqrt{4-(-2)}\\
\vdots\\
\sqrt{4-(2)}\\
\end{bmatrix}\\+
\displaystyle\frac{1}{2}
\begin{bmatrix}
\sqrt{4-(-2)}&\dots&\sqrt{4-(2)}
\end{bmatrix}
\begin{bmatrix}
1\\
\vdots\\
1
\end{bmatrix}
\Bigg)\Delta x
\end{eqnarray}
\)
Pythonコード
Pythonコードは以下。
import numpy as np
N=10000000 # 次元数
L=2-(-2) # 定積分の範囲
dt=L/N # Δx
x=np.linspace(-2,2,N)
y=(x**3*np.cos(x)@np.sqrt(4-x**2).T + np.sqrt(4-x**2)@np.ones((N,1))/2)*dt
print("%.15f"%(y[0]))
処理結果
処理結果は以下。
3.141592339325351
円周率は
3.141592653589793…
よって、これも小数点第6位まではあっている。
Nの数値を大きくすれば、もっと精度は上がると言う理屈だ。
まとめ
- 複雑な定積分をPythonで求めた。
- 同様に円周率が答えとして算出。
- 小数点第6位まで一緒。
- Nを増やせばもっと精度は上がる。
MATLAB、Python、Scilab、Julia比較ページはこちら
マンガでわかるフーリエ解析
手を動かしてまなぶ フーリエ解析・ラプラス変換
物理数学 量子力学のためのフーリエ解析・特殊関数
単位が取れるフーリエ解析ノート
今日から使えるフーリエ変換 普及版 式の意味を理解し、使いこなす
コメント