バックナンバーはこちら。
https://www.simulationroom999.com/blog/compare-matlabpythonscilabjulia5-backnumber/
はじめに
前回は、オイラーの公式とそれの変形の式を元にcos関数、sin関数を複素指数関数で表現した。
これについて、もう少し話を掘り下げる。
登場人物
博識フクロウのフクさん
イラストACにて公開の「kino_k」さんのイラストを使用しています。
https://www.ac-illust.com/main/profile.php?id=iKciwKA9&area=1
エンジニア歴8年の太郎くん
イラストACにて公開の「しのみ」さんのイラストを使用しています。
https://www.ac-illust.com/main/profile.php?id=uCKphAW2&area=1
【再掲】複素フーリエ級数に至る道
まずは複素フーリエ級数に至る道を再掲。
- テイラー級数
- マクローリン級数
- 指数関数のマクローリン展開
- cos(x)のマクローリン展開
- sin(x)のマクローリン展開
- オイラーの公式
- 複素フーリエ級数
さらに、複素フーリエ級数を導出するステップも再掲。
- オイラーの公式とそれの変形の式を元にcos関数、sin関数を複素指数関数で表現する。
- 実数フーリエ級数のcos関数、sin関数に上記を代入する。
- 代入した上で頑張って最適化する。
- Σの下限を\(-\infty\)、上限を\(\infty\)にする。
今回は、cos関数、sin関数を複素指数関数について少し掘り下げ。
【再掲】sin,cosを複素指数関数で表現する公式
これが前回求めた公式
\(
\begin{eqnarray}
\begin{bmatrix}
\cos(x)\\
\sin(x)
\end{bmatrix}&=&
\begin{bmatrix}
\displaystyle\frac{1}{2}&\displaystyle\frac{1}{2}\\
\displaystyle\frac{1}{2i}&\displaystyle – \frac{1}{2i}
\end{bmatrix}
\begin{bmatrix}
e^{ix}\\e^{-ix}
\end{bmatrix}\\
\end{eqnarray}
\)
\(
\begin{eqnarray}
\begin{cases}
\displaystyle\cos(x)=\frac{e^{ix}+e^{-ix}}{2} \\
\displaystyle\sin(x)=\frac{e^{ix}-e^{-ix}}{2i} \\
\end{cases}
\end{eqnarray}
\)
まぁ、実数フーリエ級数に代入していくのだろうけど、魔境臭半端ないな・・・。
その前にMATLABで逆行列を検算してみよう。
そっか。MATLABだったら、逆行列は一撃で求まるのか。
MATLABで逆行列を検算
MATLABで演算させた結果は以下。
>> inv([1 1i; 1 -1i])
ans =
0.5000 0.5000
0 - 0.5000i 0 + 0.5000i
んー?なんか違うような・・・。
式に起こし直すと・・・。
\(
\begin{eqnarray}
\begin{bmatrix}
1&i\\
1&-i
\end{bmatrix}^{-1}=
\begin{bmatrix}
0.5&0.5\\
-0.5i&0.5i
\end{bmatrix}=
\begin{bmatrix}
\displaystyle\frac{1}{2}&\displaystyle\frac{1}{2}\\
\displaystyle-\frac{1}{2}i&\displaystyle\frac{1}{2}i
\end{bmatrix}
\end{eqnarray}
\)
なんか一致してない!!
あー、これは・・・。
まとめ
まとめだよ。
- 前回のcos,sinを複素指数関数で表現する式をMATLABの逆行列で検算。
- なぜか異なるような結果になった。
- が、実は・・・。
バックナンバーはこちら。
マンガでわかるフーリエ解析
手を動かしてまなぶ フーリエ解析・ラプラス変換
物理数学 量子力学のためのフーリエ解析・特殊関数
単位が取れるフーリエ解析ノート
今日から使えるフーリエ変換 普及版 式の意味を理解し、使いこなす
コメント