バックナンバーはこちら。
https://www.simulationroom999.com/blog/compare-matlabpythonscilabjulia5-backnumber/
はじめに
前回はcos関数のマクローリン展開の説明。
今回はsin関数のマクローリン展開について。
登場人物
博識フクロウのフクさん

イラストACにて公開の「kino_k」さんのイラストを使用しています。
https://www.ac-illust.com/main/profile.php?id=iKciwKA9&area=1
エンジニア歴8年の太郎くん

イラストACにて公開の「しのみ」さんのイラストを使用しています。
https://www.ac-illust.com/main/profile.php?id=uCKphAW2&area=1
【再掲】複素フーリエ級数に至る道

まずは複素フーリエ級数に至る道を再掲。
- テイラー級数
- マクローリン級数
- 指数関数のマクローリン展開
- cos(x)のマクローリン展開
- sin(x)のマクローリン展開
- オイラーの公式
- 複素フーリエ級数

今回は、sin(x)のマクローリン展開。
sin(x)のマクローリン展開

今回はsin関数だけど、cos関数と似た感じになるのかな?

見た目上は若干ややこくなるが、
ほぼ一緒だな。
というわけで、sin関数を微分しまくる。
\(
\begin{eqnarray}
f(x)&=&\sin(x)\\
f^{\prime}(x)&=&\cos(x)\\
f^{\prime\prime}(x)&=&-\sin(x)\\
f^{\prime\prime\prime}(x)&=&-\cos(x)\\
f^{\prime\prime\prime\prime}(x)&=&\sin(x)\dots4階微分で\sin(x)に戻る\\
\end{eqnarray}
\)

まぁ、cos関数の時と似た感じか。

cosの時と同じように整理すると、
\(
f(x)^n=\cases{
\sin(x)\dots(n=0,4,8,\dots)\\
\cos(x)\dots(n=1,5,9,\dots)\\
-\sin(x)\dots(n=2,6,10,\dots)\\
-\cos(x)\dots(n=3,7,11,\dots)\\
}
\)

原点のみで見ると以下になる。
\(
f(0)^n=\cases{
\sin(0)=0\dots(n=0,4,8,\dots)\\
\cos(0)=1\dots(n=1,5,9,\dots)\\
-\sin(0)-0\dots(n=2,6,10,\dots)\\
-\cos(0)=-1\dots(n=3,7,11,\dots)\\
}
\)

nが偶数の時は0になり、奇数の時は符号が反転するので、以下の式にまとめらえる。
\(
\begin{eqnarray}
\displaystyle f(x)&=&f(0)+\frac{f^\prime(0)}{1!}x+\frac{f^\prime\prime(0)}{2!}x^2+\dots\\
\displaystyle &=&f(0)+\sum_{n=1}^\infty\frac{f^n(0)}{n!}x^n\\
\displaystyle \sin(x)&=&x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\dots\\
\displaystyle &=& \sum_{n=0}^\infty\frac{(-1)^n x^{2n+1}}{(2n+1)!}
\end{eqnarray}
\)

cos関数の時と似てると言えば似てるが、
思ったよりもややこしいことになってるな・・・。

それでも、一つの式で表現できることは重要だな。
sin関数のマクローリン展開の式を元にプロット

nを徐々に増やした場合のプロットも見せておこう。


これも徐々に一致する範囲が広がっていく感じか。
無限にやれば、sin関数と同一にはなりそう。
まとめ

まとめだよ。
- sin関数をマクローリン展開。
- とりあえず微分しまくると4階微分の周期が見える。
- これを元にマクローリン展開。
- sin関数をマクローリン展開したプロットも出してみた。
バックナンバーはこちら。
マンガでわかるフーリエ解析
手を動かしてまなぶ フーリエ解析・ラプラス変換
物理数学 量子力学のためのフーリエ解析・特殊関数
単位が取れるフーリエ解析ノート
今日から使えるフーリエ変換 普及版 式の意味を理解し、使いこなす
コメント