バックナンバーはこちら。
https://www.simulationroom999.com/blog/compare-matlabpythonscilabjulia5-backnumber/
はじめに
フーリエ係数に至る道。
今回は三角関数の積和公式の話の続き。
フーリエ係数に向けての変形も。
登場人物
博識フクロウのフクさん

イラストACにて公開の「kino_k」さんのイラストを使用しています。
https://www.ac-illust.com/main/profile.php?id=iKciwKA9&area=1
エンジニア歴8年の太郎くん

イラストACにて公開の「しのみ」さんのイラストを使用しています。
https://www.ac-illust.com/main/profile.php?id=uCKphAW2&area=1
【再掲】フーリエ係数に至る道

まずは、フーリエ係数に至る道を再掲。
- 偶関数
- 奇関数
- 関数の内積
- 三角関数の加法定理
- 三角関数の積和公式
- 重要な極限値
- 三角関数の直交性
- フーリエ係数

今回は三角関数の積和公式の続きになる。
【再掲】三角関数の加法定理達

一応、加法定理も再掲。
\(
\begin{eqnarray}
\sin(\alpha+\beta)&=&\sin(\alpha)\cos(\beta)+\cos(\alpha)\sin(\beta)\\
\sin(\alpha-\beta)&=&\sin(\alpha)\cos(\beta)-\cos(\alpha)\sin(\beta)\\
\cos(\alpha+\beta)&=&\cos(\alpha)\cos(\beta)+\sin(\alpha)\sin(\beta)\\
\cos(\alpha-\beta)&=&\cos(\alpha)\cos(\beta)-\sin(\alpha)\sin(\beta)
\end{eqnarray}
\)
sinとsinの積和公式

最後の積和公式はsinとsinの積だ。
以下で導出する。
\(
\begin{eqnarray}
\cos(\alpha+\beta)-\cos(\alpha-\beta)&=&-2\sin(\alpha)\sin(\beta)\\
\sin(\alpha)\sin(\beta)&=&\displaystyle\frac{\cos(\alpha-\beta)-\cos(\alpha+\beta)}{2}
\end{eqnarray}
\)

cosの加法定理の引き算で求められるのか。
積和公式の変形

これで必要な積和公式がそろった。

じゃー、今回はここまで・・・。

ちょい待ち!

(なんか嫌な予感する・・・。)

フーリエ係数に話を繋がげるためにもう一段変形が必要だ。

なにをすれば良いの?

\(\alpha,\beta\)を\(\alpha x,\beta x\)にするだけ。

それって大変なの?

いんや。
普通に代入して最適化するだけだな。
まず、導出した積和公式を並べよう。
\(
\begin{eqnarray}
\sin(\alpha)\cos(\beta)&=&\displaystyle\frac{\sin(\alpha+\beta)+\sin(\alpha-\beta)}{2}\\
\cos(\alpha)\cos(\beta)&=&\displaystyle\frac{\cos(\alpha+\beta)+\cos(\alpha-\beta)}{2}\\
\sin(\alpha)\sin(\beta)&=&\displaystyle\frac{\cos(\alpha-\beta)-\cos(\alpha+\beta)}{2}
\end{eqnarray}
\)

あとは、\(\alpha,\beta\)を\(\alpha x,\beta x\)にして、xを分解
\(
\begin{eqnarray}
\sin(\alpha x)\cos(\beta x)&=&\displaystyle\frac{\sin\{(\alpha+\beta)x\}+\sin\{(\alpha-\beta)x\}}{2}\\
\cos(\alpha x)\cos(\beta x)&=&\displaystyle\frac{\cos\{(\alpha+\beta)x\}+\cos\{(\alpha-\beta)x\}}{2}\\
\sin(\alpha x)\sin(\beta x)&=&\displaystyle\frac{\cos\{(\alpha-\beta)x\}-\cos\{(\alpha+\beta)x\}}{2}
\end{eqnarray}
\)

本当に置き換えるだけか。

これは後で使うことになるから、
こういうものあると、一応覚えておいて。
まとめ

まとめだよ。
- sin,sinの積和公式を導出。
- 積和公式をフーリエ係数に向けて変形。
- α,βをαx,βxにするだけ。
バックナンバーはこちら。
マンガでわかるフーリエ解析
手を動かしてまなぶ フーリエ解析・ラプラス変換
物理数学 量子力学のためのフーリエ解析・特殊関数
単位が取れるフーリエ解析ノート
今日から使えるフーリエ変換 普及版 式の意味を理解し、使いこなす
コメント