バックナンバーはこちら。
https://www.simulationroom999.com/blog/compare-matlabpythonscilabjulia5-backnumber/
はじめに
フーリエ解析学の分類、フーリエ級数とフーリエ係数の分類を認識し、
大雑把な範囲を認識してもらう回。
登場人物
博識フクロウのフクさん

イラストACにて公開の「kino_k」さんのイラストを使用しています。
https://www.ac-illust.com/main/profile.php?id=iKciwKA9&area=1
エンジニア歴8年の太郎くん

イラストACにて公開の「しのみ」さんのイラストを使用しています。
https://www.ac-illust.com/main/profile.php?id=uCKphAW2&area=1
フーリエ級数とフーリエ係数

まずは、フーリエに関連する話として、以下の分け方ができる。
- フーリエ解析学
- フーリエ級数とフーリエ係数
- 複雑な事象を三角関数または複素指数関数(複素平面上円軌道)で作る
- フーリエ変換と逆フーリエ変換
- フーリエ級数の理屈を利用して複雑な事象を周波数に表現し直す、またはそれを元の事象に戻す
- フーリエ級数とフーリエ係数

まずは、フーリエ級数とフーリエ係数って部分になるのなか?

さらにフーリエ級数とフーリエ係数ももう少し分解できる。
- 実数フーリエ
- フーリエ級数
- フーリエ係数
- 複素フーリエ
- 複素フーリエ級数
- 複素フーリエ係数

複素フーリエは、複素数を使うんだよね・・・。
複素数とか出てきたら意味わからん・・・。

まぁ、まずは実数側からやるから、
そこを理解した上での複素フーリエだったらなんとかなるだろう。
複素数と言っても、複素平面の円軌道に限られるし。

(複素平面の円軌道という表現がもう意味わからん・・・。)
フーリエ級数へ至る道

この感じだと、まずはフーリエ級数をやるって感じかな。

そうなのだが、当然必要な前提知識がある。
まずはこれらを列挙しよう。
- 無限級数
- 波の合成
- フーリエ級数

あ、でも前提知識は2つくらいか。

フーリエ級数の方はこの程度だろう。

(つまり、フーリエ係数の方がヤベェってことぢゃねぇか・・・。)

次回から、これらを一つずつ説明していこう。
まとめ

まとめだよ。
- フーリエ解析学は「フーリエ級数、係数」と「フーリエ変換、逆フーリエ変換」に分けられる。
- 「フーリエ級数、係数」も実数フーリエと複素フーリエに分けらえる。
- まずはフーリエ級数に至る道を提示。
バックナンバーはこちら。
マンガでわかるフーリエ解析
手を動かしてまなぶ フーリエ解析・ラプラス変換
物理数学 量子力学のためのフーリエ解析・特殊関数
単位が取れるフーリエ解析ノート
今日から使えるフーリエ変換 普及版 式の意味を理解し、使いこなす
コメント