MATLAB,Python,Scilab,Julia比較 第4章 その90【ユニット数増加⑤】

MATLAB,Python,Scilab,Julia比較 第4章 その90【ユニット数増加⑤】 数値計算
MATLAB,Python,Scilab,Julia比較 第4章 その90【ユニット数増加⑤】

バックナンバーはこちら。
https://www.simulationroom999.com/blog/compare-matlabpythonscilabjulia4-backnumber/

はじめに

隠れ層のユニット数を増やすことで局所最適解にハマる現象を回避してみる。
今回はJuliaで実現。

登場人物

博識フクロウのフクさん

指差しフクロウ

イラストACにて公開の「kino_k」さんのイラストを使用しています。
https://www.ac-illust.com/main/profile.php?id=iKciwKA9&area=1

エンジニア歴8年の太郎くん

技術者太郎

イラストACにて公開の「しのみ」さんのイラストを使用しています。
https://www.ac-illust.com/main/profile.php?id=uCKphAW2&area=1

構造と数式【再掲】

太郎くん
太郎くん

隠れ層のユニットを増やした場合の構成を数式を再掲

多層パーセプトロン隠れ層4ユニット

\(
y=
\sigma\Bigg(
\begin{bmatrix}
w_{211}&w_{212}&w_{213}&w_{214}&b_2
\end{bmatrix}
\begin{bmatrix}
\sigma\bigg(
\begin{bmatrix}
w_{111}&w_{112}&b_1\\
w_{121}&w_{122}&b_1\\
w_{131}&w_{132}&b_1\\
w_{141}&w_{142}&b_1\\
\end{bmatrix}
\begin{bmatrix}
x_1\\x_2\\1
\end{bmatrix}
\bigg)\\
1
\end{bmatrix}
\Bigg)
\)

フクさん
フクさん

今回はこれをJuliaで実現する。

Juliaコード

フクさん
フクさん

Juliaコードは以下。

using PyPlot

function sigmoid(x)
    return 1.0 ./ (1.0 + exp.(-x))
end

function sigmoid_derivative(x)
    return sigmoid(x) .* (1.0 - sigmoid(x))
end

function meshgrid(xin,yin)
    nx=length(xin)
    ny=length(yin)
    xout=zeros(ny,nx)
    yout=zeros(ny,nx)
    for jx=1:nx
        for ix=1:ny
            xout[ix,jx]=xin[jx]
            yout[ix,jx]=yin[ix]
        end
    end
    return (x=xout, y=yout)
end

function MultilayerPerceptron()
	# データの準備
	X = [0 0; 0 1; 1 0; 1 1]  # 入力データ
	y = [0; 1; 1; 0]  # 出力データ

	# ネットワークの構築
	hidden_size = 4  # 隠れ層のユニット数
	output_size = 1  # 出力層のユニット数
	learning_rate = 0.5  # 学習率

	input_size = size(X, 2)
	W1 = randn(input_size, hidden_size)  # 入力層から隠れ層への重み行列
	b1 = randn(1, hidden_size)  # 隠れ層のバイアス項
	W2 = randn(hidden_size, output_size)  # 隠れ層から出力層への重み行列
	b2 = randn(1, output_size)  # 出力層のバイアス項

	# 学習
	epochs = 4000  # エポック数

	errors = zeros(epochs, 1)  # エポックごとの誤差を保存する配列

	for epoch in 1:epochs
	    # 順伝播
        Z1 = X * W1 .+ b1 # 隠れ層の入力
	    A1 = sigmoid.(Z1)  # 隠れ層の出力
        Z2 = A1 * W2 .+ b2 # 出力層の入力
	    A2 = sigmoid.(Z2)  # 出力層の出力

	    # 誤差計算(平均二乗誤差)
	    error = (1 / size(X, 1)) * sum((A2 - y) .^ 2)
	    errors[epoch] = error

	    # 逆伝播
	    delta2 = (A2 - y) .* sigmoid_derivative.(Z2)
	    delta1 = (delta2 * W2') .* sigmoid_derivative.(Z1)

	    grad_W2 = A1' * delta2
	    grad_b2 = sum(delta2)
	    grad_W1 = X' * delta1
	    grad_b1 = sum(delta1)

	    # パラメータの更新
	    W1 = W1 - learning_rate * grad_W1
	    b1 = b1 .- learning_rate .* grad_b1
	    W2 = W2 - learning_rate * grad_W2
	    b2 = b2 .- learning_rate .* grad_b2
	end

	# 決定境界線の表示
	h = 0.01  # メッシュの間隔
	x1, x2 = meshgrid(minimum(X[:, 1])-0.5:h:maximum(X[:, 1])+0.5, minimum(X[:, 2])-0.5:h:maximum(X[:, 2])+0.5)
	X_mesh = hcat(x1[:], x2[:])

	hidden_layer_mesh = sigmoid.(X_mesh * W1 .+ b1)
	output_layer_mesh = sigmoid.(hidden_layer_mesh * W2 .+ b2)
	y_mesh = round.(output_layer_mesh)
	figure()
	decision_mesh = reshape(y_mesh, size(x1))  # 分類結果のメッシュを元のグリッドサイズに変形する
	colormap = ["#CCFFCC","#FFCCCC"]  # 各領域の色を指定する
	contourf(x1, x2, decision_mesh, levels=1, colors=colormap)
	scatter(X[y .== 1, 1], X[y .== 1, 2], 100, "r", facecolors="none",label="Class 1")  # クラス1のデータ点を赤でプロット
	scatter(X[y .== 0, 1], X[y .== 0, 2], 100, "g", facecolors="none",label="Class 0")  # クラス0のデータ点を緑でプロット
	xlabel("X1")
	ylabel("X2")
	title("XOR Classification")
	legend(loc="best")  # クラスの順序を入れ替える
	grid(true)
	show()
	
	figure()
	plot(errors[1:4000])
	show()
end

MultilayerPerceptron()

処理結果

フクさん
フクさん

処理結果は以下。
パターン2の方が隠れ層のユニット数を2から4にしたことで出てきた分類パターンになる。

パターン1

多層パーセプトロンによる分類4ユニットパターン1(Julia)
多層パーセプトロンによる分類誤差関数4ユニットパターン1(Julia)

パターン2

多層パーセプトロンによる分類4ユニットパターン2(Julia)
多層パーセプトロンによる分類誤差関数4ユニットパターン2(Julia)

まとめ

フクさん
フクさん

まとめだよ。

  • 多層パーセプトロンの隠れ層のユニット数を2から4に変えたJuliaコードで分類を実施。
  • 大きく2パターンの分類パターンがある。
    • やや複雑な分類パターンが4ユニットにすることで出てきたもの。

バックナンバーはこちら。

Pythonで動かして学ぶ!あたらしい線形代数の教科書

Amazon.co.jp: Pythonで動かして学ぶ!あたらしい線形代数の教科書 eBook : かくあき: Kindleストア
Amazon.co.jp: Pythonで動かして学ぶ!あたらしい線形代数の教科書 eBook : かくあき: Kindleストア

ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装

ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装 | 斎藤 康毅 |本 | 通販 | Amazon
Amazonで斎藤 康毅のゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装。アマゾンならポイント還元本が多数。斎藤 康毅作品ほか、お急ぎ便対象商品は当日お届けも可能。またゼロから作るDeep Lea...

ゼロからはじめるPID制御

ゼロからはじめるPID制御 | 熊谷 英樹 |本 | 通販 | Amazon
Amazonで熊谷 英樹のゼロからはじめるPID制御。アマゾンならポイント還元本が多数。熊谷 英樹作品ほか、お急ぎ便対象商品は当日お届けも可能。またゼロからはじめるPID制御もアマゾン配送商品なら通常配送無料。

OpenCVによる画像処理入門

OpenCVによる画像処理入門 改訂第3版 (KS情報科学専門書) | 小枝 正直, 上田 悦子, 中村 恭之 |本 | 通販 | Amazon
Amazonで小枝 正直, 上田 悦子, 中村 恭之のOpenCVによる画像処理入門 改訂第3版 (KS情報科学専門書)。アマゾンならポイント還元本が多数。小枝 正直, 上田 悦子, 中村 恭之作品ほか、お急ぎ便対象商品は当日お届けも可能。...

恋する統計学[回帰分析入門(多変量解析1)] 恋する統計学[記述統計入門]

恋する統計学[回帰分析入門(多変量解析1)] 恋する統計学[記述統計入門] | 金城俊哉 | 数学 | Kindleストア | Amazon
Amazonで金城俊哉の恋する統計学 恋する統計学。アマゾンならポイント還元本が多数。一度購入いただいた電子書籍は、KindleおよびFire端末、スマートフォンやタブレットなど、様々な端末でもお楽しみいただけます。

Pythonによる制御工学入門

Amazon.co.jp

理工系のための数学入門 ―微分方程式・ラプラス変換・フーリエ解析

Amazon.co.jp

コメント

タイトルとURLをコピーしました