バックナンバーはこちら。
https://www.simulationroom999.com/blog/compare-matlabpythonscilabjulia4-backnumber/
はじめに
多層パーセプトロンの誤差逆伝播法を行う。
今回はMATLABで実現。
登場人物
博識フクロウのフクさん
イラストACにて公開の「kino_k」さんのイラストを使用しています。
https://www.ac-illust.com/main/profile.php?id=iKciwKA9&area=1
エンジニア歴8年の太郎くん
イラストACにて公開の「しのみ」さんのイラストを使用しています。
https://www.ac-illust.com/main/profile.php?id=uCKphAW2&area=1
誤差逆伝播法の各演算【再掲】
まずは、前回求めた誤差逆伝播法の各演算を再掲。
隠れ層の重み\(W_2\)とバイアス\(b_2\)の勾配(\(\Delta W_2,\Delta b_2\))を特定
\(
\Delta W_2=\Delta_2 A_2
\)
\(
\Delta b_2=\Delta_2 1
\)
入力層の重み\(W_1\)とバイアス\(b_1\)の勾配(\(\Delta W_1,\Delta b_1\))を特定
\(
\Delta W_1=\Delta_1 X
\)
\(
\Delta b_1=\Delta_1 1
\)
各勾配から各重み、各バイアスを更新(学習率\(\mu\)を掛けておく)
\(
\begin{eqnarray}
W_1&=&W_1-\mu\Delta W_1\\
b_1&=&b_1-\mu\Delta b_1\\
W_2&=&W_2-\mu\Delta W_2\\
b_2&=&b_2-\mu\Delta b_2\\
\end{eqnarray}
\)
これをMATLABで実現する。
MATLABコード
MATLABコードは以下。
% シグモイド関数の定義
sigmoid = @(x) 1./(1 + exp(-x));
% シグモイド関数の導関数の定義
sigmoid_derivative = @(x) sigmoid(x).*(1 - sigmoid(x));
% データの準備
X = [0 0; 0 1; 1 0; 1 1]; % 入力データ
y = [0; 1; 1; 0]; % 出力データ
% ネットワークの構築
hidden_size = 2; % 隠れ層のユニット数
output_size = 1; % 出力層のユニット数
learning_rate = 0.5; % 学習率
input_size = size(X, 2);
W1 = randn(input_size, hidden_size); % 入力層から隠れ層への重み行列
b1 = randn(1, hidden_size); % 隠れ層のバイアス項
W2 = randn(hidden_size, output_size); % 隠れ層から出力層への重み行列
b2 = randn(1, output_size); % 出力層のバイアス項
% 学習
epochs = 4000; % エポック数
errors = zeros(epochs, 1); % エポックごとの誤差を保存する配列
for epoch = 1:epochs
% 順伝播
Z1 = X * W1 + ones(size(X, 1),1)*b1; % 隠れ層の入力
A1 = sigmoid(Z1); % 隠れ層の出力
Z2 = A1 * W2 + b2; % 出力層の入力
A2 = sigmoid(Z2); % 出力層の出力
% 誤差計算(平均二乗誤差)
error = (1/size(X, 1)) * sum((A2 - y).^2);
errors(epoch) = error;
% 逆伝播
delta2 = (A2 - y) .* sigmoid_derivative(Z2);
delta1 = (delta2 * W2') .* sigmoid_derivative(Z1);
grad_W2 = A1' * delta2;
grad_b2 = sum(delta2);
grad_W1 = X' * delta1;
grad_b1 = sum(delta1);
% パラメータの更新
W1 = W1 - learning_rate * grad_W1;
b1 = b1 - learning_rate * grad_b1;
W2 = W2 - learning_rate * grad_W2;
b2 = b2 - learning_rate * grad_b2;
end
% 決定境界線の表示
h = 0.01; % メッシュの間隔
[x1, x2] = meshgrid(min(X(:,1))-0.5:h:max(X(:,1))+0.5, min(X(:,2))-0.5:h:max(X(:,2))+0.5);
X_mesh = [x1(:) x2(:)];
hidden_layer_mesh = sigmoid(X_mesh * W1 + ones(size(X_mesh, 1),1)*b1);
output_layer_mesh = sigmoid(hidden_layer_mesh * W2 + b2);
y_mesh = round(output_layer_mesh); % 出力を0または1に丸める
figure;
decision_mesh = reshape(y_mesh, size(x1)); % 分類結果のメッシュを元のグリッドサイズに変形する
colormap([0.8 1 0.8; 1 0.8 0.8]); % カラーマップの順序を入れ替える
contourf(x1, x2, decision_mesh);
hold on;
scatter(X(y==1, 1), X(y==1, 2), 100, 'r', 'filled'); % クラス1のデータ点を赤でプロット
scatter(X(y==0, 1), X(y==0, 2), 100, 'g', 'filled'); % クラス0のデータ点を緑でプロット
xlabel('X1');
ylabel('X2');
title('XOR Classification');
legend('', 'Class 1', 'Class 0'); % クラスの順序を入れ替える
grid
hold off;
処理結果
処理結果は以下。
まとめ
まとめだよ。
- 多層パーセプトロンによる分類をMATLABで実施。
- 一応ちゃんと分類できた。
バックナンバーはこちら。
Pythonで動かして学ぶ!あたらしい線形代数の教科書
ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装
ゼロからはじめるPID制御
OpenCVによる画像処理入門
恋する統計学[回帰分析入門(多変量解析1)] 恋する統計学[記述統計入門]
Pythonによる制御工学入門
理工系のための数学入門 ―微分方程式・ラプラス変換・フーリエ解析
コメント