MATLAB,Python,Scilab,Julia比較 第4章 その66【単純パーセプトロンで分類②】

MATLAB,Python,Scilab,Julia比較 第4章 その66【単純パーセプトロンで分類②】 数値計算
MATLAB,Python,Scilab,Julia比較 第4章 その66【単純パーセプトロンで分類②】

バックナンバーはこちら。
https://www.simulationroom999.com/blog/compare-matlabpythonscilabjulia4-backnumber/

はじめに

単純パーセプトロンで分類を行う。
逆伝播の復習を行いつつ、分類の方法を考える。
今回は逆伝播の復習と最適化。

登場人物

博識フクロウのフクさん

指差しフクロウ

イラストACにて公開の「kino_k」さんのイラストを使用しています。
https://www.ac-illust.com/main/profile.php?id=iKciwKA9&area=1

エンジニア歴8年の太郎くん

技術者太郎

イラストACにて公開の「しのみ」さんのイラストを使用しています。
https://www.ac-illust.com/main/profile.php?id=uCKphAW2&area=1

逆伝播の復習

太郎くん
太郎くん

なんか逆伝播をプログラム化する上で最適化が可能とか言ってたよね。

フクさん
フクさん

そうそう。
まずは、重みとバイアスの逆伝播を実現する連鎖律を再掲しておこう。

重みの逆伝播

\(
\begin{eqnarray}
\displaystyle\frac{\partial E}{\partial W}&=&\frac{\partial E}{\partial A}\frac{\partial A}{\partial Z}\frac{\partial Z}{\partial W}\\
&=&{\color{red}(A-Y)\cdot\sigma(Z)\{1-\sigma(Z)\}}\cdot X
\end{eqnarray}
\)

バイアスの逆伝播

\(
\begin{eqnarray}
\displaystyle\frac{\partial E}{\partial b}&=&\frac{\partial E}{\partial A}\frac{\partial A}{\partial Z}\frac{\partial Z}{\partial b}\\
&=&(A-Y)\cdot\sigma(Z)\{1-\sigma(Z)\}\cdot 1\\
&=&{\color{red}(A-Y)\cdot\sigma(Z)\{1-\sigma(Z)\}}
\end{eqnarray}
\)

太郎くん
太郎くん

そうそう。
そんな感じ。

フクさん
フクさん

というわけで、まずは赤字の部分を算出してしまう。
この部分を\(dZ\)とする。

\(
\begin{eqnarray}
\displaystyle dZ&=&\frac{\partial E}{\partial A}\frac{\partial A}{\partial Z}=(A-Y)\cdot\sigma(Z)\{1-\sigma(Z)\}\cdot X\\
&=&
\Bigg(
\begin{bmatrix}
a_1\\a_2\\a_3\\a_4
\end{bmatrix}-
\begin{bmatrix}
0\\0\\0\\1
\end{bmatrix}
\Bigg)\circ
\sigma\Bigg(
\begin{bmatrix}
z_1\\z_2\\z_3\\z_4
\end{bmatrix}
\Bigg\{
1-\sigma\Bigg(
\begin{bmatrix}
z_1\\z_2\\z_3\\z_4
\end{bmatrix}
\Bigg)
\Bigg\}
\end{eqnarray}
\)

フクさん
フクさん

そして、重みへの連鎖律は以下に最適化される。

\(
\displaystyle\frac{\partial E}{\partial W}=dZ^TX=
\begin{bmatrix}
dz_1\\dz_2\\dz_3\\dz_4
\end{bmatrix}^T
\begin{bmatrix}
0&0\\
0&1\\
1&0\\
1&1\\
\end{bmatrix}
\)

フクさん
フクさん

バイアスの連鎖律は以下

\(
\displaystyle\frac{\partial E}{\partial b}=\sum dZ=
\begin{bmatrix}
dz_1\\dz_2\\dz_3\\dz_4
\end{bmatrix}^T
\begin{bmatrix}
1\\1\\1\\1
\end{bmatrix}
\)

太郎くん
太郎くん

プログラムで実現する場合は、途中の変数に結果を格納できるから、
その部分で処理の最適化ができるってことか。

フクさん
フクさん

そうそう。

まとめ

フクさん
フクさん

まとめだよ。

  • 重みとバイアスの連鎖律の最適化。
    • 共通部分があるので、そこを切り出し。
    • プログラムの場合は、こういう共通部分を変数に格納するなどの最適化が可能。

バックナンバーはこちら。

Pythonで動かして学ぶ!あたらしい線形代数の教科書

Amazon.co.jp: Pythonで動かして学ぶ!あたらしい線形代数の教科書 eBook : かくあき: Kindleストア
Amazon.co.jp: Pythonで動かして学ぶ!あたらしい線形代数の教科書 eBook : かくあき: Kindleストア

ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装

ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装 | 斎藤 康毅 |本 | 通販 | Amazon
Amazonで斎藤 康毅のゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装。アマゾンならポイント還元本が多数。斎藤 康毅作品ほか、お急ぎ便対象商品は当日お届けも可能。またゼロから作るDeep Lea...

ゼロからはじめるPID制御

ゼロからはじめるPID制御 | 熊谷 英樹 |本 | 通販 | Amazon
Amazonで熊谷 英樹のゼロからはじめるPID制御。アマゾンならポイント還元本が多数。熊谷 英樹作品ほか、お急ぎ便対象商品は当日お届けも可能。またゼロからはじめるPID制御もアマゾン配送商品なら通常配送無料。

OpenCVによる画像処理入門

OpenCVによる画像処理入門 改訂第3版 (KS情報科学専門書) | 小枝 正直, 上田 悦子, 中村 恭之 |本 | 通販 | Amazon
Amazonで小枝 正直, 上田 悦子, 中村 恭之のOpenCVによる画像処理入門 改訂第3版 (KS情報科学専門書)。アマゾンならポイント還元本が多数。小枝 正直, 上田 悦子, 中村 恭之作品ほか、お急ぎ便対象商品は当日お届けも可能。...

恋する統計学[回帰分析入門(多変量解析1)] 恋する統計学[記述統計入門]

恋する統計学[回帰分析入門(多変量解析1)] 恋する統計学[記述統計入門] | 金城俊哉 | 数学 | Kindleストア | Amazon
Amazonで金城俊哉の恋する統計学 恋する統計学。アマゾンならポイント還元本が多数。一度購入いただいた電子書籍は、KindleおよびFire端末、スマートフォンやタブレットなど、様々な端末でもお楽しみいただけます。

Pythonによる制御工学入門

Amazon.co.jp

理工系のための数学入門 ―微分方程式・ラプラス変換・フーリエ解析

Amazon.co.jp

コメント

タイトルとURLをコピーしました