MATLAB,Python,Scilab,Julia比較 第4章 その64【逆伝播⑮】

MATLAB,Python,Scilab,Julia比較 第4章 その64【逆伝播⑮】 数値計算
MATLAB,Python,Scilab,Julia比較 第4章 その64【逆伝播⑮】

バックナンバーはこちら。
https://www.simulationroom999.com/blog/compare-matlabpythonscilabjulia4-backnumber/

はじめに

単純パーセプトロンに対する逆伝播を行う。
まずは逆伝播を行った際の重みの動き方を確認するプログラムを作成する。
今回はJuliaでこれを実現する。

登場人物

博識フクロウのフクさん

指差しフクロウ

イラストACにて公開の「kino_k」さんのイラストを使用しています。
https://www.ac-illust.com/main/profile.php?id=iKciwKA9&area=1

エンジニア歴8年の太郎くん

技術者太郎

イラストACにて公開の「しのみ」さんのイラストを使用しています。
https://www.ac-illust.com/main/profile.php?id=uCKphAW2&area=1

【再掲】プログラム化する数式

太郎くん
太郎くん

まずは、今回プログラム化する数式を再掲。

\(
\begin{eqnarray}
\displaystyle\frac{\partial E}{\partial W}&=&(A-Y)\cdot\sigma(Z)\{1-\sigma(Z)\}\cdot X\\
&=&\sum \Bigg\{\Bigg(\begin{bmatrix}a_1\\a_2\\a_3\\a_4\end{bmatrix}-\begin{bmatrix}0\\0\\0\\1\end{bmatrix}\Bigg)\Bigg\}\circ
\sigma\Bigg(\begin{bmatrix}z_1\\z_2\\z_3\\z_4\end{bmatrix}\Bigg)
\Bigg\{1-\sigma\Bigg(\begin{bmatrix}z_1\\z_2\\z_3\\z_4\end{bmatrix}\Bigg)\Bigg\}
\begin{bmatrix}1&1\end{bmatrix}
\begin{bmatrix}0&0\\0&1\\1&0\\1&1\end{bmatrix}
\end{eqnarray}
\)

フクさん
フクさん

これをJuliaで実現する。
重みはそれぞれ2.7近辺に収束すればOKだ。

Juliaコード

フクさん
フクさん

以下がJuliaコード。

using PyPlot

# シグモイド関数の定義
sigmoid(x) = 1.0 ./ (1.0 + exp(-x))

# シグモイド関数の導関数の定義
sigmoid_derivative(x) = sigmoid(x) .* (1.0 - sigmoid(x))

function BackPropagationExperiment()
	# データセットの定義
	X = [0 0; 0 1; 1 0; 1 1]
	Y = [0; 0; 0; 1]
	W = [1.0 6.0]
	b = -4.0

	N = 200  # ループ回数
	aW = zeros(N, 2)  # 重み記録用バッファ

	for i in 1:N
	    # 順伝播
	    Z = X * W' .+ b
	    A = sigmoid.(Z)

	    # 逆伝播
	    dW = sum((A - Y) .* sigmoid_derivative.(Z) .* ones(1, 2) .* X,dims=1)

	    # パラメータの更新
	    W -= dW
	    aW[i, :] = W  # 重みを記憶
	end

	plot(aW)  # 重みの変化の経緯をplot
	legend(["w_1", "w_2"])
	grid(true)
	println("W = ", W)  # 最終的な重み
end

BackPropagationExperiment();
フクさん
フクさん

処理結果は以下。

逆伝播で重みの変化(Julia)
W = [2.666436611316014 2.6668966708053743]

まとめ

フクさん
フクさん

まとめだよ。

  • 逆伝播を行った際の重みの動き方を確認するプログラムをJuiaで作成。
  • おおよそ狙ったところに収束。

バックナンバーはこちら。

Pythonで動かして学ぶ!あたらしい線形代数の教科書

Amazon.co.jp: Pythonで動かして学ぶ!あたらしい線形代数の教科書 eBook : かくあき: Kindleストア
Amazon.co.jp: Pythonで動かして学ぶ!あたらしい線形代数の教科書 eBook : かくあき: Kindleストア

ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装

ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装 | 斎藤 康毅 |本 | 通販 | Amazon
Amazonで斎藤 康毅のゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装。アマゾンならポイント還元本が多数。斎藤 康毅作品ほか、お急ぎ便対象商品は当日お届けも可能。またゼロから作るDeep Lea...

ゼロからはじめるPID制御

ゼロからはじめるPID制御 | 熊谷 英樹 |本 | 通販 | Amazon
Amazonで熊谷 英樹のゼロからはじめるPID制御。アマゾンならポイント還元本が多数。熊谷 英樹作品ほか、お急ぎ便対象商品は当日お届けも可能。またゼロからはじめるPID制御もアマゾン配送商品なら通常配送無料。

OpenCVによる画像処理入門

OpenCVによる画像処理入門 改訂第3版 (KS情報科学専門書) | 小枝 正直, 上田 悦子, 中村 恭之 |本 | 通販 | Amazon
Amazonで小枝 正直, 上田 悦子, 中村 恭之のOpenCVによる画像処理入門 改訂第3版 (KS情報科学専門書)。アマゾンならポイント還元本が多数。小枝 正直, 上田 悦子, 中村 恭之作品ほか、お急ぎ便対象商品は当日お届けも可能。...

恋する統計学[回帰分析入門(多変量解析1)] 恋する統計学[記述統計入門]

恋する統計学[回帰分析入門(多変量解析1)] 恋する統計学[記述統計入門] | 金城俊哉 | 数学 | Kindleストア | Amazon
Amazonで金城俊哉の恋する統計学 恋する統計学。アマゾンならポイント還元本が多数。一度購入いただいた電子書籍は、KindleおよびFire端末、スマートフォンやタブレットなど、様々な端末でもお楽しみいただけます。

Pythonによる制御工学入門

Amazon.co.jp

理工系のための数学入門 ―微分方程式・ラプラス変換・フーリエ解析

Amazon.co.jp

コメント

タイトルとURLをコピーしました