MATLAB,Python,Scilab,Julia比較 第4章 その28【連鎖律の前準備②】

MATLAB,Python,Scilab,Julia比較 第4章 その28【連鎖律の前準備②】 数値計算
MATLAB,Python,Scilab,Julia比較 第4章 その28【連鎖律の前準備②】

バックナンバーはこちら。
https://www.simulationroom999.com/blog/compare-matlabpythonscilabjulia4-backnumber/

はじめに

連鎖律を把握するための解説。
必要な知識の列挙。
そしてまずは逆数の微分公式について。

登場人物

博識フクロウのフクさん

指差しフクロウ

イラストACにて公開の「kino_k」さんのイラストを使用しています。
https://www.ac-illust.com/main/profile.php?id=iKciwKA9&area=1

エンジニア歴8年の太郎くん

技術者太郎

イラストACにて公開の「しのみ」さんのイラストを使用しています。
https://www.ac-illust.com/main/profile.php?id=uCKphAW2&area=1

連鎖律を把握するための知識

太郎くん
太郎くん

連鎖律を把握するためにいろいろやっていくのだと思うのだけど、
どんな感じでやっていくの?

フクさん
フクさん

大雑把には以下の流れだ。

  • 逆数の微分公式
  • 積の微分公式
  • 商の微分公式
  • シグモイド関数の導関数
  • 多変量関数の連鎖律
  • 勾配降下法
フクさん
フクさん

まぁ、まずはシグモイド関数の導関数を求めるところが中間ゴールかな。

太郎くん
太郎くん

何一つ分かる単語が無ぇ・・・。

フクさん
フクさん

ちなみに数式まみれになると思うから
その点は覚悟が必要だ。

太郎くん
太郎くん

(地獄じゃねぇか・・・。)

逆数の微分公式

フクさん
フクさん

まず逆数の微分公式。
これも後ほど出てくる商の微分公式に必要なものだ。

太郎くん
太郎くん

どんなもの?

フクさん
フクさん

とある関数の逆数の微分をするとその関数の二乗分のその関数の微分になり符号が反転する。

太郎くん
太郎くん

もはや日本語ぢゃ無ぇ・・・。

フクさん
フクさん

公式を先に出そう。

\(
\displaystyle\bigg\{\frac{1}{f(x)}\bigg\}^\prime=-\frac{f\prime(x)}{\{f(x)\}^2}
\)

太郎くん
太郎くん

意味わからんものが意味わからんものに変形されてる・・・。

フクさん
フクさん

これは後で利用するものだから覚えておいてくらいしか言えないな。

逆数の微分公式の導出

フクさん
フクさん

これの導出方法はシンプル。
導関数を定義通り求めればOK。
途中でいい感じに変形していい感じの解釈をする必要はある。

太郎くん
太郎くん

(いい感じがわからん・・・。)

\(
\begin{eqnarray}
\displaystyle\bigg\{\frac{1}{f(x)}\bigg\}^\prime&=&\lim_{h\to0}\frac{\frac{1}{f(x+h)}-\frac{1}{f(x)}}{h}\\
&=&\lim_{h\to0}\frac{f(x)-f(x+h)}{h\cdot f(x)f(x+h)}\\
&=&\lim_{h\to0}-\frac{1}{f(x){\color{red}f(x+h)}}\cdot{\color{red}\frac{f(x+h)-f(x)}{h}}
\end{eqnarray}
\)

フクさん
フクさん

ここで、それぞれの赤字に着目し

\(
\displaystyle\lim_{h\to0}\frac{f(x+h)-f(x)}{h}=f\prime(x)
\)

\(
\displaystyle\lim_{h\to0}f(x+h)=f(x)
\)

フクさん
フクさん

これを先ほどの式に代入すると先ほどの逆数の微分公式が求まる。

\(
\begin{eqnarray}
\displaystyle\bigg\{\frac{1}{f(x)}\bigg\}^\prime&=&-\frac{1}{f(x)^2}\cdot f\prime(x)\\
&=&-\frac{f\prime(x)}{\{f(x)\}^2}\\
\end{eqnarray}
\)

太郎くん
太郎くん

まぁ、なるほどと思っておくしかねぇな。

まとめ

フクさん
フクさん

まとめだよ。

  • 連鎖律を把握するための知識を列挙。
    • 恐らく数式ラッシュになる。
  • まずは逆数の微分公式。
    • 途中、式を分解してそれぞれの導関数を求めてから代入で導出できる。

バックナンバーはこちら。

Pythonで動かして学ぶ!あたらしい線形代数の教科書

Amazon.co.jp

ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装

Amazon.co.jp

ゼロからはじめるPID制御

https://amzn.to/3SvzuyR

OpenCVによる画像処理入門

https://amzn.to/498ZUgK

恋する統計学[回帰分析入門(多変量解析1)] 恋する統計学[記述統計入門]

Amazon.co.jp

Pythonによる制御工学入門

Amazon.co.jp

理工系のための数学入門 ―微分方程式・ラプラス変換・フーリエ解析

https://amzn.to/3UAunQK

コメント

タイトルとURLをコピーしました