MATLAB,Python,Scilab,Julia比較 第4章 その22【シグモイドによる決定境界安定化②】

MATLAB,Python,Scilab,Julia比較 第4章 その22【シグモイドによる決定境界安定化②】 数値計算
MATLAB,Python,Scilab,Julia比較 第4章 その22【シグモイドによる決定境界安定化②】

バックナンバーはこちら。
https://www.simulationroom999.com/blog/compare-matlabpythonscilabjulia4-backnumber/

はじめに

シグモイド関数についての説明。
カスタムヘヴィサイド関数(造語)とシグモイド関数の比較についても。

登場人物

博識フクロウのフクさん

指差しフクロウ

イラストACにて公開の「kino_k」さんのイラストを使用しています。
https://www.ac-illust.com/main/profile.php?id=iKciwKA9&area=1

エンジニア歴8年の太郎くん

技術者太郎

イラストACにて公開の「しのみ」さんのイラストを使用しています。
https://www.ac-illust.com/main/profile.php?id=uCKphAW2&area=1

決定境界直線の一般的な安定化方法

太郎くん
太郎くん

今回はシグモイド関数を説明してくれるんだよね。

フクさん
フクさん

そうそう。
まずはWikipediaから引用。

シグモイド関数(シグモイドかんすう、英: sigmoid function)は、次の式

\(
\displaystyle\varsigma=\frac{1}{1+e^{-ax}}=\frac{tanh(ax/2)+1}{2}
\)

で表される実関数である。ここで、 \(a\)をゲイン (gain) と呼ぶ。 シグモイド関数は、生物の神経細胞が持つ性質をモデル化したものとして用いられる。

Wikipediaより(https://ja.wikipedia.org/wiki/%E3%82%B7%E3%82%B0%E3%83%A2%E3%82%A4%E3%83%89%E9%96%A2%E6%95%B0)
太郎くん
太郎くん

ようわからん式が・・・。

フクさん
フクさん

数式自体は、そういうものなんだなって程度で覚えておけばOKだ。
とくに理屈のようなものはない。
理屈はないが、特性は利用するってスタンスだな。

太郎くん
太郎くん

その特性が0,1を表現可能で、全域で勾配があるってやつか。

フクさん
フクさん

そうそう。
あとは、導関数が存在するというのも重要な性質だが、
これについてはいずれ話そう。

太郎くん
太郎くん

あと、「生物の神経細胞場持つ性質」ってあるのがニューラルネットワークっぽい。

フクさん
フクさん

細かい経緯はわからないが、ニューラルネットワークのために生まれた関数なのかもね。

カスタムヘヴィサイドとシグモイドの違い

フクさん
フクさん

ここまでの説明でカスタムヘヴィサイドとシグモイドの差は分かったとは思うが一応図示しておこう。

カスタムヘヴィサイドとシグモイドの比較、勾配が無い、どこかのタイミングでここに入ればOKだが…。、シグモイド関数、常に勾配がある
太郎くん
太郎くん

まぁ予想通りな感じだ。
カスタムヘビサイドは±2.5より外側には勾配が無いけど、
シグモイドは常に勾配がある感じ。

フクさん
フクさん

今使用している総当たり法の場合、どちらを使用しても同じ結果になるはずだが、
今後予定している誤差逆伝播法を使用し始めるとシグモイドじゃないとかなり都合が悪い。
誤差逆伝播法についても必要になったら説明しよう。

太郎くん
太郎くん

ようわからんが、誤差逆伝播法は全域で勾配が無いと都合が悪いってことか。

プログラム化について

フクさん
フクさん

一応カスタムヘヴィサイドの代わりにシグモイドを使用したプログラムを作成するが、
本当に関数を差し替えるだけだ。
よって、ソースコードは作成するが細かい考察はしない予定だ。

太郎くん
太郎くん

まぁ、総当たり法ではカスタムヘヴィサイドとシグモイドに効能的な差がなさそうだから
それでもよさそう。

まとめ

フクさん
フクさん

まとめだよ。

  • シグモイド関数の定義について説明。
    • 特に理屈はなく、そういうものが存在するって程度。
  • カスタムヘヴィサイドとシグモイドの比較。
    • 総当たり法では効能の差は出ないが、誤差逆伝播法を使い始めるとシグモイドじゃないと都合が悪い。

バックナンバーはこちら。

Pythonで動かして学ぶ!あたらしい線形代数の教科書

Amazon.co.jp: Pythonで動かして学ぶ!あたらしい線形代数の教科書 eBook : かくあき: Kindleストア
Amazon.co.jp: Pythonで動かして学ぶ!あたらしい線形代数の教科書 eBook : かくあき: Kindleストア

ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装

ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装 | 斎藤 康毅 |本 | 通販 | Amazon
Amazonで斎藤 康毅のゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装。アマゾンならポイント還元本が多数。斎藤 康毅作品ほか、お急ぎ便対象商品は当日お届けも可能。またゼロから作るDeep Lea...

ゼロからはじめるPID制御

ゼロからはじめるPID制御 | 熊谷 英樹 |本 | 通販 | Amazon
Amazonで熊谷 英樹のゼロからはじめるPID制御。アマゾンならポイント還元本が多数。熊谷 英樹作品ほか、お急ぎ便対象商品は当日お届けも可能。またゼロからはじめるPID制御もアマゾン配送商品なら通常配送無料。

OpenCVによる画像処理入門

OpenCVによる画像処理入門 改訂第3版 (KS情報科学専門書) | 小枝 正直, 上田 悦子, 中村 恭之 |本 | 通販 | Amazon
Amazonで小枝 正直, 上田 悦子, 中村 恭之のOpenCVによる画像処理入門 改訂第3版 (KS情報科学専門書)。アマゾンならポイント還元本が多数。小枝 正直, 上田 悦子, 中村 恭之作品ほか、お急ぎ便対象商品は当日お届けも可能。...

恋する統計学[回帰分析入門(多変量解析1)] 恋する統計学[記述統計入門]

恋する統計学[回帰分析入門(多変量解析1)] 恋する統計学[記述統計入門] | 金城俊哉 | 数学 | Kindleストア | Amazon
Amazonで金城俊哉の恋する統計学 恋する統計学。アマゾンならポイント還元本が多数。一度購入いただいた電子書籍は、KindleおよびFire端末、スマートフォンやタブレットなど、様々な端末でもお楽しみいただけます。

Pythonによる制御工学入門

Amazon.co.jp

理工系のための数学入門 ―微分方程式・ラプラス変換・フーリエ解析

Amazon.co.jp

コメント

タイトルとURLをコピーしました