MATLAB,Python,Scilab,Julia比較 第4章 その106【最適化アルゴリズム⑤】

MATLAB,Python,Scilab,Julia比較 第4章 その106【最適化アルゴリズム⑤】 数値計算
MATLAB,Python,Scilab,Julia比較 第4章 その106【最適化アルゴリズム⑤】

バックナンバーはこちら。
https://www.simulationroom999.com/blog/compare-matlabpythonscilabjulia4-backnumber/

はじめに

Adamに至るまでの最適化アルゴリズムの系譜の説明をすることとなった。
今回はAdam。

登場人物

博識フクロウのフクさん

指差しフクロウ

イラストACにて公開の「kino_k」さんのイラストを使用しています。
https://www.ac-illust.com/main/profile.php?id=iKciwKA9&area=1

エンジニア歴8年の太郎くん

技術者太郎

イラストACにて公開の「しのみ」さんのイラストを使用しています。
https://www.ac-illust.com/main/profile.php?id=uCKphAW2&area=1

最適化アルゴリズムいろいろ【再掲】

太郎くん
太郎くん

まずは説明予定の最適化アルゴリズムを再掲。

  • AdaGrad(済)
  • RMSprop(Root Mean Square Propagation)(済)
  • AdaDelta(済)
  • Adam(Adaptive Moment Estimation)
フクさん
フクさん

今回は本命のAdam。

Adam

太郎くん
太郎くん

やっと本命のAdamに到達だね。

フクさん
フクさん

今まで説明した中で一番ややこしい奴だな。

太郎くん
太郎くん

(まぁ、そうなんだろうなとは思ってたけど・・・。)

フクさん
フクさん

AdamはモーメンタムとRMSpropの合わせ技のような最適化アルゴリズムだ。

太郎くん
太郎くん

ということは、モーメンタム、RMSpropと比べるといい感じってことか。

フクさん
フクさん

というわけで、モーメンタム、RMSprop、Adamの更新式を併記する。

モーメンタム

\(
\begin{eqnarray}
v_{t+1}&=&\beta v_t+\alpha\nabla J(\theta_t)\\
\theta_{t+1}&=&\theta_t-\alpha v_{t+1}
\end{eqnarray}
\)

RMSprop

\(
\begin{eqnarray}
E[g^2]_t&=&\beta E[g^2]_{t-1}+(1-\beta)(\nabla J(\theta_t))^2\\
\displaystyle\theta_{t+1}&=&\theta_t-\frac{\alpha}{\sqrt{E[g^2]_t+\epsilon}}\\
E[g^2]&:&過去の勾配の2乗の指数移動平均\\
\end{eqnarray}
\)

Adam

\(
\begin{eqnarray}
m_{t+1}&=&\beta_1 m_{t-1}+(1-\beta_1)\nabla J(\theta_t)\\
v_{t+1}&=&\beta_2 v_{t-1}+(1-\beta_2)(\nabla J(\theta_t))^2\\
\displaystyle\hat{m}_{t+1}&=&\frac{m_{t+1}}{1-\beta_1}\\
\displaystyle\hat{v}_{t+1}&=&\frac{v_{t+1}}{1-\beta_2}\\
\displaystyle\theta_{t+1}&=&\theta_t-\frac{\alpha}{\sqrt{\hat{v}_{t+1}}+\epsilon}\\
m_t&:&1次のモーメント\\
v_t&:&2次のモーメント\\
\hat{m}_t,\hat{v}_t&:&バイアス補正項\\
\beta_1,\beta_2&:&指数移動平均係数(\beta_1=0.9,\beta_2=0.999)
\end{eqnarray}
\)

太郎くん
太郎くん

なんかAdamがヤベェ・・・。

フクさん
フクさん

やってることはシンプルではある。
勾配の1次と2次の指数移動平均を算出。
1次はモーメンタムのように過去の勢いを乗せる。
2次はRMSpropのように現在及び近い過去の勾配の大きさが更新の抑制になる。
この2つのバランスの間で更新をする。

太郎くん
太郎くん

うーん、なんか勢いを乗せるものと抑制するものが同居している感じなのか・・・。

フクさん
フクさん

まぁ、Adamが効果を発揮するのは、ネットワークが複雑になり、オンライン学習やミニバッチ学習のように学習データを確率的に利用する場合だから、ここではこういうもんだと思うしかないな。

太郎くん
太郎くん

まぁ、モーメンタムとRMSpropはわかったから、それの合わせ技でAdamって思っておけば大丈夫か。

まとめ

フクさん
フクさん

まとめだよ。

  • 最適化アルゴリズムAdamについて説明。
  • モーメンタムとRMSpropの合わせ技。
    • 1次の勾配と、2次の勾配の指数移動平均を使用する。

バックナンバーはこちら。

Pythonで動かして学ぶ!あたらしい線形代数の教科書

Amazon.co.jp: Pythonで動かして学ぶ!あたらしい線形代数の教科書 eBook : かくあき: Kindleストア
Amazon.co.jp: Pythonで動かして学ぶ!あたらしい線形代数の教科書 eBook : かくあき: Kindleストア

ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装

ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装 | 斎藤 康毅 |本 | 通販 | Amazon
Amazonで斎藤 康毅のゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装。アマゾンならポイント還元本が多数。斎藤 康毅作品ほか、お急ぎ便対象商品は当日お届けも可能。またゼロから作るDeep Lea...

ゼロからはじめるPID制御

ゼロからはじめるPID制御 | 熊谷 英樹 |本 | 通販 | Amazon
Amazonで熊谷 英樹のゼロからはじめるPID制御。アマゾンならポイント還元本が多数。熊谷 英樹作品ほか、お急ぎ便対象商品は当日お届けも可能。またゼロからはじめるPID制御もアマゾン配送商品なら通常配送無料。

OpenCVによる画像処理入門

OpenCVによる画像処理入門 改訂第3版 (KS情報科学専門書) | 小枝 正直, 上田 悦子, 中村 恭之 |本 | 通販 | Amazon
Amazonで小枝 正直, 上田 悦子, 中村 恭之のOpenCVによる画像処理入門 改訂第3版 (KS情報科学専門書)。アマゾンならポイント還元本が多数。小枝 正直, 上田 悦子, 中村 恭之作品ほか、お急ぎ便対象商品は当日お届けも可能。...

恋する統計学[回帰分析入門(多変量解析1)] 恋する統計学[記述統計入門]

恋する統計学[回帰分析入門(多変量解析1)] 恋する統計学[記述統計入門] | 金城俊哉 | 数学 | Kindleストア | Amazon
Amazonで金城俊哉の恋する統計学 恋する統計学。アマゾンならポイント還元本が多数。一度購入いただいた電子書籍は、KindleおよびFire端末、スマートフォンやタブレットなど、様々な端末でもお楽しみいただけます。

Pythonによる制御工学入門

Amazon.co.jp

理工系のための数学入門 ―微分方程式・ラプラス変換・フーリエ解析

Amazon.co.jp

コメント

タイトルとURLをコピーしました