MATLAB,Python,Scilab,Julia比較 第4章 その105【最適化アルゴリズム④】

MATLAB,Python,Scilab,Julia比較 第4章 その105【最適化アルゴリズム④】 数値計算
MATLAB,Python,Scilab,Julia比較 第4章 その105【最適化アルゴリズム④】

バックナンバーはこちら。
https://www.simulationroom999.com/blog/compare-matlabpythonscilabjulia4-backnumber/

はじめに

Adamに至るまでの最適化アルゴリズムの系譜の説明をすることとなった。
今回はAdaDelta。

登場人物

博識フクロウのフクさん

指差しフクロウ

イラストACにて公開の「kino_k」さんのイラストを使用しています。
https://www.ac-illust.com/main/profile.php?id=iKciwKA9&area=1

エンジニア歴8年の太郎くん

技術者太郎

イラストACにて公開の「しのみ」さんのイラストを使用しています。
https://www.ac-illust.com/main/profile.php?id=uCKphAW2&area=1

最適化アルゴリズムいろいろ【再掲】

太郎くん
太郎くん

まずは説明予定の最適化アルゴリズムを再掲。

  • AdaGrad(済)
  • RMSprop(Root Mean Square Propagation)(済)
  • AdaDelta
  • Adam(Adaptive Moment Estimation)
フクさん
フクさん

今回はAdaDelta。

AdaDelta

太郎くん
太郎くん

AdaDeltaは、何かの最適化アルゴリズムの拡張版だったりするの?

フクさん
フクさん

AdaDeltaは前回説明したRMSpropの拡張版だな。

太郎くん
太郎くん

ということは、RMSpropと併記してもらえると分かり易そうだね。

フクさん
フクさん

というわけで、RMSpropとAdaDeltaの更新式を並べてみよう。

RMSprop

\(
\begin{eqnarray}
E[g^2]_t&=&\beta E[g^2]_{t-1}+(1-\beta)(\nabla J(\theta_t))^2\\
\displaystyle\theta_{t+1}&=&\theta_t-\frac{\alpha}{\sqrt{E[g^2]_t+\epsilon}}\\
E[g^2]&:&過去の勾配の2乗の指数移動平均\\
\end{eqnarray}
\)

AdaDelta

\(
\begin{eqnarray}
E[g^2]_t&=&\beta E[g^2]_{t-1}+(1-\beta)(\nabla J(\theta_t))^2\\
E[\Delta\theta^2]_t&=&\beta E[\Delta\theta^2]_{t-1}+(1-\beta)(\theta_t)^2\\
\displaystyle\theta_{t+1}&=&\theta_t-\frac{\sqrt{E[\Delta\theta^2]_t+\epsilon}}{\sqrt{E[g^2]_t+\epsilon}}\nabla J(\theta_t)\\
\theta_{t+1}&=&\theta_t+\Delta\theta_t\\
E[g^2]&:&過去の勾配の2乗の指数移動平均\\
E[\Delta\theta^2]_t&:&過去の更新量の2乗の指数移動平均
\end{eqnarray}
\)

太郎くん
太郎くん

なんかヤベェことになってきたな・・・。

フクさん
フクさん

特徴としては、学習率と言うハイパーパラメータが存在しない点だな。

太郎くん
太郎くん

あ、ほんとだ。

フクさん
フクさん

といっても、\(\theta_0\)というパラメータの初期値は必要だけどね。

太郎くん
太郎くん

あと、そこから自動で学習率を調整していく感じか。

フクさん
フクさん

一応欠点もあって、最終的には学習率が1近傍に収束するようで、
振動しやすいというのがあるな。

太郎くん
太郎くん

でも、ほぼ自動でいい感じにやってくれそうな最適化アルゴリズムが出てきたって感じはするね。

まとめ

フクさん
フクさん

まとめだよ。

  • AdaDeltaについて説明。
  • RMSpropの拡張版に当たる。
  • 学習率というハイパーパラメータ無しで動作する。
  • 最終的な学習率は1近傍になるため振動しやすいらしい。

バックナンバーはこちら。

Pythonで動かして学ぶ!あたらしい線形代数の教科書

Amazon.co.jp: Pythonで動かして学ぶ!あたらしい線形代数の教科書 eBook : かくあき: Kindleストア
Amazon.co.jp: Pythonで動かして学ぶ!あたらしい線形代数の教科書 eBook : かくあき: Kindleストア

ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装

ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装 | 斎藤 康毅 |本 | 通販 | Amazon
Amazonで斎藤 康毅のゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装。アマゾンならポイント還元本が多数。斎藤 康毅作品ほか、お急ぎ便対象商品は当日お届けも可能。またゼロから作るDeep Lea...

ゼロからはじめるPID制御

ゼロからはじめるPID制御 | 熊谷 英樹 |本 | 通販 | Amazon
Amazonで熊谷 英樹のゼロからはじめるPID制御。アマゾンならポイント還元本が多数。熊谷 英樹作品ほか、お急ぎ便対象商品は当日お届けも可能。またゼロからはじめるPID制御もアマゾン配送商品なら通常配送無料。

OpenCVによる画像処理入門

OpenCVによる画像処理入門 改訂第3版 (KS情報科学専門書) | 小枝 正直, 上田 悦子, 中村 恭之 |本 | 通販 | Amazon
Amazonで小枝 正直, 上田 悦子, 中村 恭之のOpenCVによる画像処理入門 改訂第3版 (KS情報科学専門書)。アマゾンならポイント還元本が多数。小枝 正直, 上田 悦子, 中村 恭之作品ほか、お急ぎ便対象商品は当日お届けも可能。...

恋する統計学[回帰分析入門(多変量解析1)] 恋する統計学[記述統計入門]

恋する統計学[回帰分析入門(多変量解析1)] 恋する統計学[記述統計入門] | 金城俊哉 | 数学 | Kindleストア | Amazon
Amazonで金城俊哉の恋する統計学 恋する統計学。アマゾンならポイント還元本が多数。一度購入いただいた電子書籍は、KindleおよびFire端末、スマートフォンやタブレットなど、様々な端末でもお楽しみいただけます。

Pythonによる制御工学入門

Amazon.co.jp

理工系のための数学入門 ―微分方程式・ラプラス変換・フーリエ解析

Amazon.co.jp

コメント

タイトルとURLをコピーしました