MATLAB,Python,Scilab,Julia比較 第2章 その73【多変量多項式回帰分析(関数項)②】

MATLAB,Python,Scilab,Julia比較 第2章 その73【多変量多項式回帰分析(関数項)②】 数値計算
MATLAB,Python,Scilab,Julia比較 第2章 その73【多変量多項式回帰分析(関数項)②】

バックナンバーはこちら。
https://www.simulationroom999.com/blog/compare-matlabpythonscilabjulia2-backnumber/

はじめに

正規方程式を用いた、多変量多項式回帰分析(関数項あり)について。
今回は、MATLABで演算してみる。

登場人物

博識フクロウのフクさん

指差しフクロウ

イラストACにて公開の「kino_k」さんのイラストを使用しています。
https://www.ac-illust.com/main/profile.php?id=iKciwKA9&area=1

エンジニア歴8年の太郎くん

技術者太郎

イラストACにて公開の「しのみ」さんのイラストを使用しています。
https://www.ac-illust.com/main/profile.php?id=uCKphAW2&area=1

正規方程式、各パラメータ、推定対象の多項式再掲

太郎くん
太郎くん

多変量多項式回帰分析(関数項あり)をMATLABで実現だね。
まずは恒例の正規方程式、多変量多項式回帰分析(関数項あり)で想定するパラメータの再掲。

正規方程式

\(
x=(A^TA)^{-1}A^Tb
\)

多変量多項式回帰分析(関数項あり)に於ける各パラメータ

\(
A=
\begin{bmatrix}
x_1^2 & \cos(6x_1) & y_1^2 & \exp(2y_1) &1\\
x_2^2 & \cos(6x_2) & y_2^2 & \exp(2y_2) &1\\
\vdots & \vdots & \vdots\\
x_n^2 & \cos(6x_n) & y_n^2 & \exp(2y_n) &1\\
\end{bmatrix},
\vec{x}=
\begin{bmatrix}
\alpha\\
\beta\\
\gamma\\
\delta\\
\epsilon\\
\end{bmatrix},
\vec{b}=
\begin{bmatrix}
z_1\\
z_2\\
\vdots\\
z_n
\end{bmatrix}
\)

推定対象の多項式

\(
z=4x^2-5\cos(6x)+3y^2+\exp(2y)+2
\)

MATLABコード

フクさん
フクさん

MATLABコードは以下になる。

n = 100;

x = rand(n, 1);
y = rand(n, 1);
z = 4*x.^2 - 5*cos(6*x) + 3*y.^2 + exp(2*y) + 2 + rand(n, 1)-0.5;

A=[x.^2  cos(6*x)  y.^2  exp(2*y)  ones(length(x),1)];
b=z;
X=(A'*A)^-1 *A'*b;
disp(X);

scatter3(x, y ,z);
hold on
xp=linspace(0, 1, 10);
yp=linspace(0, 1, 10);

[xpm,ypm]=meshgrid(xp,yp);
mesh( xp, yp, X(1)*xpm.^2 + X(2)*cos(6*xpm) + X(3)*ypm.^2 + X(4)*exp(2*ypm)+X(5));
hold off

処理結果

フクさん
フクさん

処理結果は以下。

正規方程式で多変量多項式回帰分析(関数項あり)(MATLAB)、Figure 1
    3.9746
   -5.0631
    3.8740
    0.8655
    2.2085

考察

太郎くん
太郎くん

狙い通り動いてるけど、少し誤差が出てる感じかな?

フクさん
フクさん

サンプル点数を増やすと、当然ながら元の式と同じ係数に近付いていく。
ちなみに10000点だと以下の結果になる。

    3.9843
   -4.9941
    2.7048
    1.0476
    1.9484
太郎くん
太郎くん

なるほど。
結構理想値に近い結果になってるね。

太郎くん
太郎くん

コードも方もベクトル、行列の定義が変わっただけで処理手順は変化ないね。

まとめ

フクさん
フクさん

まとめだよ。

  • 正規方程式による多変量多項式回帰分析(関数項あり)をMATLABで実施。
  • 誤差はあるものの目的の係数の算出はできている。
    • サンプル点数を増やせば、理想値に近付く。

バックナンバーはこちら。

コメント

タイトルとURLをコピーしました