MATLAB,Python,Scilab,Julia比較 第2章 その5【最小二乗法④】

MATLAB,Python,Scilab,Julia比較 第2章 その5【最小二乗法④】 数値計算
MATLAB,Python,Scilab,Julia比較 第2章 その5【最小二乗法④】

バックナンバーはこちら。
https://www.simulationroom999.com/blog/compare-matlabpythonscilabjulia2-backnumber/

はじめに

まずは最もシンプルな回帰分析である、
1次関数の最小二乗法についての説明の続き。
偏導関数の求め方も含めて解説。

登場人物

博識フクロウのフクさん

指差しフクロウ

イラストACにて公開の「kino_k」さんのイラストを使用しています。
https://www.ac-illust.com/main/profile.php?id=iKciwKA9&area=1

エンジニア歴8年の太郎くん

技術者太郎

イラストACにて公開の「しのみ」さんのイラストを使用しています。
https://www.ac-illust.com/main/profile.php?id=uCKphAW2&area=1

偏導関数の求め方?

太郎くん
太郎くん

今回は、誤差関数を偏微分する際に偏導関数を求める必要があって、
偏導関数の求め方も教えてくれるんだっけ?

フクさん
フクさん

そうそう。
まぁ、偏導関数については対して難しくはない。
基本的には導関数の求め方と一緒で、偏微分する軸以外は定数と見なす
まずは導関数の求め方を復習も兼ねて示しておこう。

導関数の求め方

フクさん
フクさん

これは高校数学の1年生くらいで習うものだと思うけど、
以下の公式がある。

\(
\displaystyle x^n\frac{d}{dx}=nx^{n-1}
\)

太郎くん
太郎くん

あー、見たことあるあるー。

偏導関数の求め方

フクさん
フクさん

先のルールは偏導関数でも一緒だ。

\(
\displaystyle \frac{\partial x^n}{\partial x}=nx^{n-1}
\)

太郎くん
太郎くん

これだけ見ると全く一緒に見えるな・・・。

フクさん
フクさん

ここに\(x\)とは別の変数として\(y\)を追加すると、以下になる。

\(
\displaystyle \frac{\partial (x^n+x^2y+y^2)}{\partial x}=nx^{n-1}+2yx
\)

太郎くん
太郎くん

んー?\(y^2\)が消えて、\(x^2y\)は\(y\)に関してはそのまま残ってる???

フクさん
フクさん

 \(y\)は変数だけど、偏導関数を求める際は定数と見なしてるんだよ。

太郎くん
太郎くん

あー、それで\(y^2\)は\(x\)と無関係だから消えるし、\(x^2y\)は\(x\)に関わる部分だけ導関数が求まる。
って感じか。

フクさん
フクさん

そうそう。

太郎くん
太郎くん

なんだ。チョロいじゃん!偏微分!

フクさん
フクさん

まぁ今回のはチョロいのを例に出してるってものあるけどね。
でも、\(x,y\)両方の動きを合わせて微分するより偏微分した方が楽だというのはわかったと思う。

太郎くん
太郎くん

確かに、簡単にしてくれてる感はあるね。

Σがある式で偏微分?

太郎くん
太郎くん

でも、今回偏微分しようとしてる誤差関数ってΣが式に入ってるじゃん?
これの扱いがめんどそうな気がするんだけど・・・。

フクさん
フクさん

結論から言うとΣは気にしなくてよい。
例えば、以下の式を考えよう。

\(
\displaystyle\frac{\partial\sum x_i^2}{\partial x}
\)

太郎くん
太郎くん

これの微分のイメージが沸かない・・・。

フクさん
フクさん

上の式をこうしたら?

\(
\displaystyle\frac{\partial(x_1^2+x_2^2+x_3^2+\dots+x_n^2)}{\partial x}
\)

太郎くん
太郎くん

あ!それぞれの導関数が\(2x_n\)になるから、以下の考え方になるのか!

\(
\begin{eqnarray}
\displaystyle\frac{\partial\sum x_i^2}{\partial x}&=&2x_1+2x_2+2x_3+\dots+2x_n \\
&=&\sum2x_i=2\sum x_i
\end{eqnarray}
\)

フクさん
フクさん

そうそう。
その考え方で解けばΣが入った式も怖くないはずだ。

まとめ

フクさん
フクさん

まとめだよ。

  • 偏導関数の公式の前に導関数の公式を確認。
  • 偏導関数の公式も基本は導関数の公式と一緒。
    • 偏微分する軸以外の変数を定数として扱う点が異なる。
  • Σが数式に紛れても分解すれば似たようなやり方になる。

バックナンバーはこちら。

コメント

タイトルとURLをコピーしました