MATLAB,Python,Scilab,Julia比較 その27【行列演算⑩】

MATLAB,Python,Scilab,Julia比較 その27【行列演算⑩】 数値計算
MATLAB,Python,Scilab,Julia比較 その27【行列演算⑩】

バックナンバーはこちら。
https://www.simulationroom999.com/blog/compare-matlabpythonscilabjulia-backnumber/

はじめに

前回は、余弦定理から成分表記の内積を求めた。
これを元に内積が方程式と強い関係性があることを示すこと可能となる。

今回は、上記の「方程式と内積」について。

登場人物

博識フクロウのフクさん

指差しフクロウ

イラストACにて公開の「kino_k」さんのイラストを使用しています。
https://www.ac-illust.com/main/profile.php?id=iKciwKA9&area=1

エンジニア歴8年の太郎くん

技術者太郎

イラストACにて公開の「しのみ」さんのイラストを使用しています。
https://www.ac-illust.com/main/profile.php?id=uCKphAW2&area=1

【再掲】ベクトル内積の公式達

フクさん
フクさん

前回まででベクトル内積の公式が2つになったんだけど、
覚えてる?

太郎くん
太郎くん

この2つになるんだよね?

\(\vec{A}\cdot\vec{B}=|\vec{A}||\vec{B}|\cos(\theta)\)
\(\vec{A}\cdot\vec{B}=a_1 b_1 + a_2 b_2\)

フクさん
フクさん

そうだね。
後者の成分表記については、\(\vec{A}\)と\(\vec{B}\)が平面ベクトルとは限らないんで、
実際は以下になる。

\(\vec{A}\cdot\vec{B}=a_1 b_1 + a_2 b_2 +\dots+a_n b_n \)
\(\displaystyle=\sum_{i=1}^n a_i b_i\)

太郎くん
太郎くん

そうか、言われてみるとベクトル成分が2個とは限らないもんね。

フクさん
フクさん

その「2個とは限らない」が方程式と上手く繋がるポイントとなるな。

方程式と内積

フクさん
フクさん

まずシンプルな一次方程式から考えよう。
一次方程式と内積の関係は以下となり、それぞれは表現が違うだけで全く同一だ。

\(y=ax+b\)
\(y=
\begin{bmatrix}
a & b \\
\end{bmatrix}
\begin{bmatrix}
x \\
1
\end{bmatrix}
\)

太郎くん
太郎くん

この2つが一緒?なんで?

フクさん
フクさん

ベクトルの内積の計算として、先ほどの成分表記の方の公式を使ってみな。

太郎くん
太郎くん

えーっと、2要素だから、
\(\vec{A}\cdot\vec{B}=a_1 b_1 + a_2 b_2\)
でOKだな。
そうすると・・・。

太郎くん
太郎くん

あ、こうなるのか?!
確かに一緒だ!

\(y=
\begin{bmatrix}
a & b \\
\end{bmatrix}
\begin{bmatrix}
x \\
1
\end{bmatrix}=
ax+b
\)

2次方程式も

フクさん
フクさん

ちなみに成分は2要素と決まってるわけじゃないので、
2次方程式、多変数方程式でも考え方は一緒だ。
つまり、係数部の行ベクトルと変数部の列ベクトルに分離した表現が可能ってことだな。

\(y=ax^2+bx+c=
\begin{bmatrix}
a & b & c\\
\end{bmatrix}
\begin{bmatrix}
x^2 \\
x \\
1
\end{bmatrix}
\)

\(z=ax+by+c=
\begin{bmatrix}
a & b & c\\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\)

太郎くん
太郎くん

なるほど。
これは、なんかめずらしく分かり易い。

フクさん
フクさん

(め、めずらしく??)

まとめ

フクさん
フクさん

まとめだよ。

  • ベクトル内積の公式を再掲。
  • ベクトルの内積で方程式を表現できる。
  • n次方程式、多変数方程式でも考え方は一緒。

バックナンバーはこちら。

コメント

タイトルとURLをコピーしました