モデルベース開発

車両診断通信

【DoCAN】車両診断通信 その2【概要②】

車両診断通信のレイヤについて。車両診断通信のレイヤはOSI参照モデルで表現できる。ただし、プレゼンテーション層は無い。車両診断通信には大きく2つの軸がある。UDSとOBD。OBDは自動車排出ガス規制から参照されているため、各種パラメータが明確。UDSは推奨値があるだけで、実際の数値は完成車メーカ依存。
車両診断通信

【DoCAN】車両診断通信 その1【概要①】

自動車には診断通信機能というものが備わっている。それについて語っていくシリーズもの。車両診断通信の概要情報はググればOK。代表的な規格はISO15765-2とISO14229-1。完成車メーカの方針によっては具体的な要件ではなく、規格番号が要件ということもある。
事例

最小構成のモデルベース開発事例 バックナンバー

A/D、D/Aだけを持った装置にPID制御を載せるという最小構成の制御ユニットをモデルベース開発に則って開発するという事例のお話。途中からインターフェースがA/D、D/AからCANに変わるという、とんでもない仕様変更をくらう若干事実っぽいエピソードも入る。
事例

【上流検証】最小構成のモデルベース開発事例 その57【ドライビングシミュレータ⑦】

ついに動かす時。そして「最小構成のモデルベース開発事例」の最終回でもある。CARLAにPID制御を組み込めた。自動車業界で自動運転以外でもPythonの使いどころは多い。自動テスト環境の一部とか。コスト構造を意識すると問題点が見えやすい。これにより何に対して創意工夫をすれば良いかが分かる。ご拝読ありがとうございました!
事例

【上流検証】最小構成のモデルベース開発事例 その56【ドライビングシミュレータ⑥】

PID制御が弱い場合、PゲインかIゲインを調整するのが一般的。しかし、今回はそもそも想定周期が異なっていた。時間の刻み(タイムスタンプ)が明確であれば、前回値との差で時間差が特定できる。この時間差を積分単位時間としてPIDの演算に組み込むことができる。(無事、伏線回収!)
事例

【上流検証】最小構成のモデルベース開発事例 その55【ドライビングシミュレータ⑤】

オープンソースドライビングシミュレータであるCARLAの話。PID制御の組み込みと、車速の取得ができたので動かす。PythonAPIを叩きすぎると重くなる。Sleep関数等を使用して処理の頻度を下げることで回避可能。
事例

【上流検証】最小構成のモデルベース開発事例その54【ドライビングシミュレータ④】

CARLAのサンプルのmanual_control.pyに制御を組み込む際はKeyboardControlクラスの_parse_vehicle_keysメソッドあたりに突っ込めば良い。車速はworld.player.get_velocity()で取得可能。ただし、3次元ベクトルで取得されるのでノルムに変換する必要がある
事例

【上流検証】最小構成のモデルベース開発事例 その53【ドライビングシミュレータ③】

オープンソースドライビングシミュレータであるCARLAの話。今回はとりあえず起動させるところまで。CARLAはWindows向け環境はある程度揃っている。とりあえず、動かす場合はmanual_control.pyがお手頃。
事例

【上流検証】最小構成のモデルベース開発事例 その52【ドライビングシミュレータ②】

オープンソースドライビングシミュレータであるCARLAの話。今回はPythonAPIについて。CARLAはPythonAPIを使ってPythonから制御できる。PythonはDLLを呼び出すことができる。よって、C言語書かれたPID制御をPythonから利用する場合はDLLにした方が良い。
事例

【上流検証】最小構成のモデルベース開発事例 その51【ドライビングシミュレータ①】

今回からオープンソースドライビングシミュレータであるCARLAの話。いつもの小芝居でスタート。オープンソースドライビングシミュレータのCARLA。自動運転のトレーニング用。車両だけでなく人も動かせる。